Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Part I Let’s Be Independent
- 1 Introduction
- 2 Axiomatic Systems
- 3 Zermelo–Fraenkel Axioms and the Axiom of Choice
- 4 Well Orderings and Ordinals
- 5 Cardinals
- 6 Models and Independence
- 7 Some Class Models of ZFC
- 8 Forcing
- 9 Violating CH
- Part II What is New in Set Theory
- References
- Index
6 - Models and Independence
from Part I - Let’s Be Independent
Published online by Cambridge University Press: 28 September 2020
- Frontmatter
- Dedication
- Contents
- Preface
- Part I Let’s Be Independent
- 1 Introduction
- 2 Axiomatic Systems
- 3 Zermelo–Fraenkel Axioms and the Axiom of Choice
- 4 Well Orderings and Ordinals
- 5 Cardinals
- 6 Models and Independence
- 7 Some Class Models of ZFC
- 8 Forcing
- 9 Violating CH
- Part II What is New in Set Theory
- References
- Index
Summary
Let L be a language of first order logic. A theory T is a set of L-sentences. T is consistent if there is no contradiction ensuing that can be deduced from T using the following notion ├:
- Type
- Chapter
- Information
- Fast Track to Forcing , pp. 29 - 31Publisher: Cambridge University PressPrint publication year: 2020