Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T14:29:26.868Z Has data issue: false hasContentIssue false

20 - Life History Trade-Offs Modulate the Speed of Senescence

from Part V - Senescence across the Tree of Life

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angilletta, M. J., Steury, T. D. & Sears, M. W. (2004). Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology, 44(6), 498509.CrossRefGoogle ScholarPubMed
Baskin, C. & Baskin, J. (2014). Ecology, Biogeography and Evolution of Dormancy and Germination (2nd edn.) (New York: Academic Press).Google Scholar
Baudisch, A. & Vaupel, J. W. (2012). Getting to the root of aging. Science, 338(6107), 618–19.CrossRefGoogle Scholar
Baudisch, A., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101: 596606.CrossRefGoogle Scholar
Bell, G. (1980). The costs of reproduction and their consequences. American Naturalist, 116(1), 4576.CrossRefGoogle Scholar
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289300.Google Scholar
Bidder, G. P. (1932). Senescence. British Medical Journal, 2(3742), 583–5.CrossRefGoogle ScholarPubMed
Bielby, J., et al. (2007). The fast‐slow continuum in mammalian life history: an empirical reevaluation. American Naturalist, 169(6), 748–57.CrossRefGoogle ScholarPubMed
Burns, J., et al. (2010). Empirical tests of life-history evolution theory using phylogenetic analysis of plant demography. Journal of Ecology, 98, 334–44.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models (Sunderland, MA: Sinauer Associates).Google Scholar
Cochran, M. E. & Ellner, S. E (1992). Simple methods for calculating age-based life history parameters for stage-structured populations. Ecological Monographs, 62(3), 345–64.CrossRefGoogle Scholar
Demetrius, L. (1978). Adaptive value, entropy and survivorship curves. Nature, 275(5677), 213–14.CrossRefGoogle ScholarPubMed
Doak, D. & Morris, W. (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis (Sunderland, MA: Sinauer Associates).Google Scholar
Gadgil, M. & Bossert, W. H. (1970). Life historical consequences of natural selection. American Naturalist, 104(935), 124.CrossRefGoogle Scholar
Gaillard, J.-M., et al. (2005). Generation time: a reliable metric to measure life‐history variation among mammalian populations. American Naturalist, 166(1), 119–23.CrossRefGoogle Scholar
Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 326, 119–57.Google ScholarPubMed
Hamel, S., et al. (2010). Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations. Ecology Letters, 13(7), 915–35.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12(1), 1245.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1996). Narrow Roads of Gene Land, Vol. 1: Evolution of Social Behaviour (Oxford University Press).Google Scholar
Hedges, S. B., et al. (2015). Tree of life reveals clock-like speciation and diversification. Molecular Biology and Evolution, 32(4), 835–45.CrossRefGoogle ScholarPubMed
Hendry, A. P., et al. (2004). Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1536), 259–66.CrossRefGoogle Scholar
Jones, O. R., et al. (2008). Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecology Letters, 11(7), 664–73.CrossRefGoogle ScholarPubMed
Jones, O. R., et al. (2014). Diversity of aging across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270(5635), 301–4.CrossRefGoogle ScholarPubMed
Lanner, R. M. & Connor, K. F. (2001). Does bristlecone pine senesce? Experimental Gerontology, 36(4–6), 675–85.CrossRefGoogle ScholarPubMed
Lefkovitch, L. P. (1965). The study of population growth in organisms grouped by stages. Biometrics, 21(1), 118.CrossRefGoogle Scholar
Legendre, P. & Legendre, L. (2012). Numerical Ecology (3rd edn., p 1006) (London: Elsevier).Google Scholar
Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33(3), 183212.CrossRefGoogle ScholarPubMed
Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis (London: Academic Press).Google Scholar
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Medvedev, Z. A. (1990). An attempt at a rational classification of theories of ageing. Biological Reviews of the Cambridge Philosophical Society, 65(3), 375–98.CrossRefGoogle Scholar
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–84.CrossRefGoogle ScholarPubMed
Paradis, E., Claude, J. & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–90.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. & Harvey, P. H. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220(3), 417–37.CrossRefGoogle Scholar
Revel, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution, 63(12), 3258–69.Google Scholar
Salguero-Gómez, R. & Casper, B. B. (2010). Keeping plant shrinkage in the demographic loop. Journal of Ecology, 98(2), 312–23.CrossRefGoogle Scholar
Salguero-Gómez, R., et al. (2015). The COMPADRE Plant Matrix Database: an open online repository for plant demography. Journal of Ecology, 103(1), 202–18.CrossRefGoogle Scholar
Salguero-Gómez, R., et al. (2016a). COMADRE: a global data base of animal demography. Journal of Animal Ecology, 85(2), 371–84.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., et al. (2016b). Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proceedings of the National Academy of Sciences of the United States of America, 113(1), 230–5.Google ScholarPubMed
Stearns, S. C. (1976). Life-history tactics: a review of the ideas. Quarterly Review of Biology, 51(1), 347.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3(3), 259–68.CrossRefGoogle Scholar
Stearns, S. C. (1992). The Evolution of Life Histories (Oxford University Press).Google Scholar
Tuljapurkar, S. (1989). An uncertain life: demography in random environments. Theoretical Population Biology, 35(3), 227–94.CrossRefGoogle ScholarPubMed
van Buuren, S. & Groothuis-Oudshoorn, K. (2011). MICE: multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 167.Google Scholar
Vaupel, J. W., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65(4), 339–51.CrossRefGoogle ScholarPubMed
Wachter, K. W. & Finch, C. E. (1997). Between Zeus and the Salmon: The Biodemography of Longevity (Washington, DC: National Research Council).Google Scholar
Westendorp, R. G. J. & Kirkwood, T. B. L. (1998). Human longevity at the cost of reproductive success. Nature, 396(6713), 743–46.CrossRefGoogle ScholarPubMed
Wikelski, M. & Thom, C. (2000). Marine iguanas shrink to survive El Niño. Nature, 403(6765), 37–8.CrossRefGoogle ScholarPubMed
Wrycza, T. F., Missov, T. I. & Baudisch, A. (2015). Quantifying the shape of aging. PLoS ONE, 10(3), e0119163.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×