Skip to main content Accessibility help
×
  • Cited by 43
Publisher:
Cambridge University Press
Online publication date:
September 2012
Print publication year:
2012
Online ISBN:
9780511978760

Book description

Presenting a systematic model reduction and hierarchical controller design framework for broad classes of integrated process systems encountered in practice, this book first studies process systems with large material recycle and/or with small purge streams, followed by systems with energy integration. Step-by-step model reduction procedures are developed to derive nonlinear reduced models of the dynamics in each time scale. Hierarchical control architectures consisting of coordinated levels of control action in different time scales are proposed for each class of process systems considered to enforce stability, tracking performance and disturbance rejection. Numerous process applications are discussed in detail to illustrate the application of the methods and their potential to improve process operations. MATLAB codes are also presented to guide further application of the methods developed and facilitate practical implementations.

Reviews

'The book should be useful to practitioners and researchers involved in dynamics and control, and as a reference for students of process systems engineering or process control.'

Source: CEP

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Adams, J.P., Collis, A. J., Henderson, R. K., and Sutton, P.W. (2009). Biotransformations in small-molecule pharmaceutical development. In J., Whittall and P., Sutton, eds., Practical Methods for Biocatalysis and Biotransformations, pp. 1–82. New York Google Scholar: John Wiley & Sons.
Ali, E. and Alhumaizi, K. L. (2000). Temperature control of ethylene to butene-1 dimerization reactor. Ind. Eng. Chem. Res., 39 Google Scholar, 1320–1329.
Andrecovich, M. J. and Westerberg, A.W. (1985a). A simple synthesis method based on utility bounding for heat-integrated distillation sequences. AIChE J., 31 Google Scholar, 363–375.
Andrecovich, M. J. and Westerberg, A.W. (1985b). An MILP formulation for heat-integrated distillation sequence synthesis. AIChE J., 31 Google Scholar, 1461–1474.
Annakou, O. and Mizsey, P. (1996). Rigorous comparative study of energyintegrated distillation schemes. Ind. Eng. Chem. Res., 35 Google Scholar, 1877–1885.
Antelo, L. T., Otero-Muras, I., Banga, J. R., and Alonso, A.A. (2007). A systematic approach to plant-wide control based on thermodynamics. Comput. Chem. Eng., 31 Google Scholar, 677–691.
Antoniades, C. and Christofides, P. D. (2001). Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport–reaction processes. Chem. Eng. Sci., 56 Google Scholar, 4517–4535.
Baldea, M. and Daoutidis, P. (2005). Dynamics and control of integrated process networks with multi-rate reactions. In Proceedings of the 16th IFAC World Congress, Prague Google Scholar.
Baldea, M. and Daoutidis, P. (2006). Model reduction and control of reactor–heat exchanger networks. J. Proc. Contr., 16 Google Scholar, 265–274.
Baldea, M. and Daoutidis, P. (2007). Control of integrated process networks – a multi-time scale perspective. Comput. Chem. Eng., 31 Google Scholar, 426–444.
Baldea, M., Daoutidis, P., and Kumar, A. (2006). Dynamics and control of integrated networks with purge streams. AIChE J., 52 CrossRef | Google Scholar, 1460–1472.
Baldea, M., Daoutidis, P., and Nagy, Z.K. (2010). Nonlinear Model Predictive Control of integrated process systems. In Proceedings Nonlinear Control Systems (NOLCOS 2010) Google Scholar.
Banerjee, A. and Arkun, Y. (1995). Control con.guration design applied to the Tennessee Eastman plant-wide control problem. Comput. Chem. Eng., 19 Google Scholar, 453–480.
Bao, J. and Lee, P. L. (2007). Process Control: The Passive Systems Approach. New York Google Scholar: Springer.
Belanger, P. W. and Luyben, W. L. (1998). Plantwide design and control of processes with inerts. 1. Light inerts. Ind. Eng. Chem. Res., 37 Google Scholar, 516–527.
Bildea, C. S. and Dimian, A.C. (1998). Stability and multiplicity approach to the design of heat integrated PFR. AIChE J., 44 Google Scholar, 2703–2712.
Bildea, C. S., Dimian, A. C., and Iedema, P. D. (2000). Nonlinear behavior of reactor–separator–recycle systems. Comput. Chem. Eng., 24 Google Scholar, 209–214.
Buckley, P. S. (1964). Techniques of Process Control. New York Google Scholar: Wiley.
Chen, J. J. J. (1987). Comments on improvements on a replacement for the logarithmic mean. Chem. Eng. Sci., 42 Google Scholar, 2488–2489.
Chen, R. and McAvoy, T. J. (2003). Plantwide control system design: methodology and application to a vinyl acetate process. Ind. Eng. Chem. Res., 42 Google Scholar, 4753–4771.
Chen, R., McAvoy, T. J., and Zafiriou, E. (2004). Plantwide control system design: extension to multiple-forcing and multiple-steady-state operation. Ind. Eng. Chem. Res., 43 Google Scholar, 3685–3694.
Chen, Y. H. and Yu, C. C. (2003). Design and control of heat integrated reactors. Ind. Eng. Chem. Res., 42 Google Scholar, 2791–2808.
Chow, J.H. and Kokotović, P. V. (1976). A decomposition of near optimum regulators for systems with slow and fast modes. IEEE Trans. Automat. Contr., 21 Google Scholar, 701–705.
Chow, J.H. and Kokotović, P. V. (1978). Two-time-scale feedback design of a class of nonlinear systems. IEEE Trans. Automat. Contr., 23 Google Scholar, 438–443.
Christofides, P. D. and Daoutidis, P. (1996a). Feedback control of two-time-scale nonlinear systems. Int. J. Contr., 63 Google Scholar, 965–994.
Christofides, P.D. and Daoutidis, P. (1996b). Compensation of measurable disturbances in two-time-scale nonlinear systems. Automatica, 32 Google Scholar, 1553–1573.
Christofides, P.D., Davis, J. F., El-Farra, N.H., Clark, D., Harris, K. R. D., and Gipson, J.N. (2007). Smart plant operations: vision, progress and challenges. AIChE J., 53 Google Scholar, 2734–2741.
Contou-Carrère, M. N., Baldea, M., and Daoutidis, P. (2004). Dynamic precompensation and output feedback control of integrated process networks. Ind. Eng. Chem. Res., 43 Google Scholar, 3528–3538.
Dadebo, S. A., Bell, M. L., McLellan, P. J., and McAuley, K.B. (1997). Temperature control of industrial gas phase polyethylene reactors. J. Proc. Contr., 7 Google Scholar, 83–95.
Daoutidis, P. and Kravaris, C. (1992). Dynamic output feedback control of minimum-phase nonlinear processes. Chem. Eng. Sci., 47 Google Scholar, 837–849.
Daoutidis, P. and Kravaris, C. (1994). Dynamic output feedback control of minimum-phase multivariable nonlinear processes. Chem. Eng. Sci., 49 Google Scholar, 433–447.
Denn, M. M. and Lavie, R. (1982). Dynamics of plants with recycle. Chem. Eng. J., 24 Google Scholar, 55–59.
Desoer, C. A. and Shahruz, S. M. (1986). Stability of nonlinear systems with three time scales. Circ. Syst. Sig. Proc., 5 Google Scholar, 449–464.
Desoer, C.A. and Vidyasagar, M. (2009). Feedback Systems: Input–Output Properties. Philadelphia, PA Google Scholar: Society for Industrial and Applied Mathematics.
Diehl, M., Amrit, R., and Rawlings, J.B. (2011). A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Automat. Contr., 56 Google Scholar, 703–707.
Diez, E., Langston, P., Ovejero, G., and Romero, M.D. (2009). Economic feasibility of heat pumps in distillation to reduce energy use. Appl. Therm. Eng., 29 Google Scholar, 1216–1223.
Dimian, A. C., Groenendijk, A. J., and Iedema, P. D. (2001). Recycle interaction effects on the control of impurities in a complex plant. Ind. Eng. Chem. Res., 40 Google Scholar, 5784–5794.
Douglas, J. M. (1988). Conceptual Design of Chemical Processes. New York Google Scholar: McGraw-Hill.
Downs, J. J. and Vogel, E. F. (1993). A plant-wide industrial process control problem. Comput. Chem. Eng., 17 Google Scholar, 245–255.
Downs, J. J. and Skogestad, S. (2009). An industrial and academic perspective on plantwide control. In IFAC Symposium on Advanced Control of Chemical Processes Google Scholar, pp. 119–130.
Edgar, T. F. (2004). Control and operations: when does controllability equal profitability?Comput. Chem. Eng., 29 Google Scholar, 41–49.
Edgar, T. F. and Davis, J. F. (2009). Smart process manufacturing – a vision of the future. In A. A., Linninger and M.M., El-Halwagi, eds., Design for Energy and the Environment: Proceedings of the Seventh International Conference on the Foundations of Computer-Aided Process Design, pp. 149–165. Boca Raton, FL Google Scholar: CRC Press.
El-Farra, N.H., Gani, A., and Christofides, P.D. (2005). Fault-tolerant control of process systems using communication networks. AIChE J., 51 Google Scholar, 1665–1682.
El-Halwagi, M. M. (2006). Process Integration. Amsterdam Google Scholar: Elsevier Academic Press.
Farschman, C. A., Viswanath, K. P., and Ydstie, B. E. (1998). Process systems and inventory control. AIChE J., 44 Google Scholar, 1841–1857.
Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equat., 31 Google Scholar, 53.
Floudas, C. A. and Paules, G. E. (1988). A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences. Comput. Chem. Eng., 12 Google Scholar, 531–546.
Foss, A. S. (1973). Critique of chemical process control theory. AIChE J., 19 Google Scholar, 209–214.
Georgakis, C. (1986). On the use of extensive variables in process dynamics and control. Chem. Eng. Sci., 41 Google Scholar, 1471–1484.
Gerdtzen, Z.P., Daoutidis, P., and Hu, W. S. (2004). Non-linear reduction for kinetic models of metabolic reaction networks. Metabolic Eng., 6 Google Scholar(2), 140–154.
Gilliland, E. R., Gould, L. A., and Boyle, T. J. (1964). Dynamic effects of material recycle. In Preprints of the Joint American Control Conference Google Scholar, pp. 140–146.
Haberman, R. (1998). Elementary Applied Partial Differential Equations, third edition. Upper Saddle River, NJ Google Scholar: Prentice-Hall.
Henderson, L. S. and Cornejo, R. A. (1989). Temperature control of continuous, bulk styrene polymerization reactors and the influence of viscosity: an analytical study. Ind. Eng. Chem. Res., 28 Google Scholar, 1644–1653.
Hoppensteadt, F. (1971). Properties of solutions of ordinary differential equations with small parameters. Commun. Pure Appl. Math., XXIV Google Scholar, 807–840.
Illanes, A. (2008). Enzyme Biocatalysis: Principles and Applications. New York Google Scholar: Springer.
Isidori, A. (1995). Nonlinear Control Systems. Berlin Google Scholar: Springer-Verlag.
Jacobsen, E. and Berezowski, M. (1998). Chaotic dynamics in homogeneous tubular reactors with recycle. Chem. Eng. Sci., 23 Google Scholar, 4023–4029.
Jacobsen, E. W. (1999). On the dynamics of integrated plants – non-minimum phase behavior. J. Proc. Contr., 9 Google Scholar, 439–451.
Jillson, K.R. and Ydstie, Y.B. (2007). Process networks with decentralized inventory and flow control. J. Proc. Contr., 17 Google Scholar, 399–413.
Jogwar, S. S. and Daoutidis, P. (2010). Energy flow patterns and control implications for integrated distillation networks. Ind. Eng. Chem. Res., 49 Google Scholar, 8048–8061.
Jogwar, S. S., Baldea, M., and Daoutidis, P. (2009). Dynamics and control of process networks with large energy recycle. Ind. Eng. Chem. Res., 48 Google Scholar, 6087–6097.
Jogwar, S. S., Torres, A. I., and Daoutidis, P. (2011). Networks with large solvent recycle: dynamics, hierarchical control and a biorefinery application. AIChE J. Google Scholar, DOI:10.1002/aic.12708.
Kanadibhotla, R. S. and Riggs, J. B. (1995). Nonlinear model based control of a recycle reactor process. Comput. Chem. Eng., 19 Google Scholar, 933–948.
Kapoor, N., McAvoy, T. J., and Marlin, T. E. (1986). Effect of recycle structure on distillation tower time constants. AIChE J., 32 Google Scholar, 411–418.
Kevorkian, J. and Cole, J.D. (1996). Multiple Scale and Singular Perturbation Methods. New York Google Scholar: Springer.
Khalil, H. K. (2002). Nonlinear Systems, third edition. Upper Saddle River, NJ Google Scholar: Prentice-Hall.
King, C. J. (1980). Separation Processes. New York Google Scholar: McGraw-Hill.
Kiss, A. A., Bildea, C. S., Dimian, A. C., and Iedema, P. D. (2002). State multiplicity in CSTR–separator–recycle polymerization systems. Chem. Eng. Sci., 57 Google Scholar, 535–546.
Kiss, A. A., Bildea, C. S., Dimian, A. C., and Iedema, P. D. (2005). Design of recycle systems with parallel and consecutive reactions by nonlinear analysis. Ind. Eng. Chem. Res., 44 Google Scholar, 576–587.
Kobayashi, S. (2009). Recent developments in lipase-catalyzed synthesis of polyesters. Macromol. Rapid Commun., 30 Google Scholar, 237–266.
Kokotović, P. V., Khalil, H. K., and O'Reilly, J. (1986). Singular Perturbations in Control: Analysis and Design. London Google Scholar: Academic Press.
Kothare, M. V., Shinnar, R., Rinard, I., and Morari, M. (2000). On defining the partial control problem: concepts and examples. AIChE J., 46 Google Scholar, 2456–2474.
Kravaris, C. and Kantor, J.C. (1990). Geometric methods for nonlinear process control, parts 1–2. Ind. Eng. Chem. Res., 29 Google Scholar, 2295–2323.
Kravaris, C., Niemiec, M., Berber, R., and Brosilow, C. B. (1998). Nonlinear model-based control of nonminimum-phase processes. In R., Berber and C., Kravaris, eds., Nonlinear Model Based Process Control, pp. 115–143. Dordrecht Google Scholar: Kluwer Academic Publishers.
Kumar, A. and Daoutidis, P. (1996). Feedback regularization and control of nonlinear differential-algebraic-equation systems. AIChE J., 42 Google Scholar, 2175–2198.
Kumar, A. and Daoutidis, P. (1999a). Control of Nonlinear Di.erential Equation Systems. Boca Raton, FL Google Scholar: Chapman & Hall/CRC Press.
Kumar, A. and Daoutidis, P. (1999b). Modeling, analysis and control of ethylene glycol reactive distillation column. AIChE J., 45 Google Scholar, 51–68.
Kumar, A. and Daoutidis, P. (2002). Dynamics and control of process networks with recycle. J. Proc. Contr., 12 Google Scholar, 475–484.
Kumar, A. and Daoutidis, P. (2003). Nonlinear model reduction and control for high-purity distillation columns. Ind. Eng. Chem. Res., 42 Google Scholar, 4495–4505.
Kumar, A., Christofides, P. D., and Daoutidis, P. (1998). Singular perturbation modeling of nonlinear processes with non-explicit time-scale separation. Chem. Eng. Sci., 53 Google Scholar, 1491–1504.
Kuster, B. F. M. and Temmink, H. M. G. (1977). The in.uence of pH and weak-acid anions on the dehydration of fructose. Carbohyd. Res., 54 Google Scholar, 185–191.
Ladde, G. S. and Siljak, D.D. (1983). Multiparameter singular perturbation of linear systems with multiple time scales. Automatica, 19 Google Scholar, 385–394.
Lakshminarayanan, S., Onodera, K., and Madhukar, G.M. (2004). Recycle effect index: a measure to aid in control system design for recycle processes. Ind. Eng. Chem. Res., 43 Google Scholar, 1499–1511.
Larsson, T. and Skogestad, S. (2000). Plantwide control – a review and a new design procedure. Modeling, Identification Contr., 21 Google Scholar, 209–240.
Larsson, T., Hestetun, K., Hovland, E., and Skogestad, S. (2001). Self-optimizing control of a large-scale plant: the Tennessee Eastman process. Ind. Eng. Chem. Res., 40 Google Scholar(22), 4889–4901.
Larsson, T., Govatsmark, M. S., Skogestad, S., and Yu, C. C. (2003). Control structure selection for reactor, separator, and recycle processes. Ind. Eng. Chem. Res., 42 Google Scholar(6), 1225–1234.
Linnhoff, B. and Hindmarsh, E. (1983). The pinch design method for heat exchanger networks. Chem. Eng. Sci., 38 Google Scholar, 745–763.
Linnhoff, B., Dunford, H., and Smith, R. (1983). Heat integration of distillation-columns into overall processes. Chem. Eng. Sci., 38 Google Scholar, 1175–1188.
Liu, J., Muñoz de la Peña, D., Ohran, B. J., Christofides, P.D., and Davis, J. F. (2008). A two-tier architecture for networked process control. Chem. Eng. Sci., 63 Google Scholar, 5394–5409.
Liu, J., Muñoz de la Peña, D., and Christofides, P.D. (2009). Distributed model predictive control of nonlinear process systems. AIChE J., 55 Google Scholar, 1171–1184.
Luyben, M. L. and Tyreus, B. D. (1998). An industrial design/control study for the vinyl acetate monomer process. Comput. Chem. Eng., 22 Google Scholar(7–8), 867–877.
Luyben, M. L., Tyreus, B. D., and Luyben, W. L. (1997). Plantwide control design procedure. AIChE J., 43 Google Scholar, 3161–3174.
Luyben, W. L. (1993a). Dynamics and control of recycle systems. Parts 1–4. Ind. Eng. Chem. Res., 32 Google Scholar, 466–486, 1142–1162.
Luyben, W. L. (1993b). Dynamics and control of recycle systems. 3. Alternative process designs in a ternary system. Ind. Eng. Chem. Res., 32 Google Scholar, 1142–1153.
Luyben, W. L. (1994). Snowball effects in reactor/separator processes with recycle. Ind. Eng. Chem. Res., 33 Google Scholar, 299–305.
Luyben, W. L. (2000). Design and control of gas-phase reactor/recycle processes with reversible exothermic reactions. Ind. Eng. Chem. Res., 39 Google Scholar, 1529–1538.
Lyman, P. R. and Georgakis, C. (1995). Plant-wide control of Tennessee Eastman problem. Comput. Chem. Eng., 19 Google Scholar, 321–331.
Marroquin, G. and Luyben, W. L. (1973). Practical control studies of batch reactors using realistic mathematical models. Chem. Eng. Sci., 28 Google Scholar, 993–1003.
Mayne, D. Q., Rawlings, J.B., Rao, C. V., and Scokaert, P. O. (2000). Constrained model predictive control: stability and optimality. Automatica, 36 Google Scholar, 789–814.
McAvoy, T. J. and Ye, N. (1994). Base control for the Tennessee Eastman problem. Comput. Chem. Eng., 18 Google Scholar, 383.
McAvoy, T. J. (1999). Synthesis of plantwide control systems using optimization. Ind. Eng. Chem. Res., 38 Google Scholar, 2984–2994.
Mészáros, I. and Fonyó, Z. (1986). A new bounding strategy for synthesizing distillation schemes with energy integration. Comput. Chem. Eng., 10 Google Scholar, 545–550.
Mhaskar, P., Gani, A., McFall, C., Christofides, P.D., and Davis, J. F. (2007). Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE J., 53 Google Scholar, 654–668.
Mizsey, P. and Kalmar, I. (1996). Effects of recycle on control of chemical processes. Comput. Chem. Eng., 20 Google Scholar, S883–S888.
Mizsey, P., Hau, N. T., Benko, N., Kalmar, I., and Fonyó, Z. (1998). Process control for energy integrated distillation schemes. Comput. Chem. Eng., 22 Google Scholar, 427–434.
Morari, M. and Faith, D.C. III, (1980). The synthesis of distillation trains with heat integration. AIChE J., 26 Google Scholar, 916–928.
Morari, M., Arkun, Y., and Stephanopoulos, G. (1980). Studies in the synthesis of control structures for chemical processes. Part 1. AIChE J., 26 Google Scholar, 220–232.
Morud, J. and Skogestad, S. (1994). Effects of recycle on dynamics and control of chemical processing plants. Comput. Chem. Eng., 18 Google Scholar, S529–S534.
Morud, J. and Skogestad, S. (1996). Dynamic behavior of integrated plants. J. Proc. Contr., 6 Google Scholar, 145–156.
Morud, J. and Skogestad, S. (1998). Analysis of instability in an industrial ammonia reactor. AIChE J., 44 Google Scholar, 888–895.
Muhrer, C.A., Collura, M.A., and Luyben, W. L. (1990). Control of vapor recompression distillation columns. Ind. Eng. Chem. Res., 29 Google Scholar, 59–71.
Ng, C. and Stephanopoulos, G. (1996). Synthesis of control systems for chemical plants. Comput. Chem. Eng., 20 Google Scholar, S999–S1004.
Nishida, N., Stephanopoulos, G., and Westerberg, A. W. (1981). A review of process synthesis. AIChE J., 27 Google Scholar, 321–351.
Paterson, W.R. (1984). A replacement for the logarithmic mean. Chem. Eng. Sci., 39 Google Scholar, 1635–1636.
Ponton, J. W. and Laing, D. M. (1993). A hierarchical approach to the design of process control systems. Chem. Eng. Res. Des., 71 Google Scholar, 181–188.
Prett, D. M. and Garcia, C. E. (1988). Fundamental Process Control. London Google Scholar: Butterworths.
Price, R. M. and Georgakis, C. (1993). Plantwide regulatory control design procedure using a tiered framework. Ind. Eng. Chem. Res., 32 Google Scholar, 2693–2705.
Pushpavanam, S. and Kienle, A. (2001). Nonlinear behavior of an ideal reactor separator network with mass recycle. Chem. Eng. Sci., 57 Google Scholar, 2837–2849.
Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Contr. Eng. Prac., 11 Google Scholar, 733–764.
Ramchandran, B., Riggs, J. B., and Heichelheim, H. R. (1992). Nonlinear plantwide control: application to a supercritical fluid extraction process. Ind. Eng. Chem. Res., 31 Google Scholar, 290–300.
Rathore, R. N. S., Van Wormer, K.A., and Powers, G. J. (1974). Synthesis strategies for multicomponent separation systems with energy integration. AIChE J., 20 Google Scholar, 491–502.
Rawlings, J.B. and Stewart, B. T. (2008). Coordinating multiple optimization-based controllers: new opportunities and challenges. J. Proc. Contr., 18 Google Scholar, 839–845.
Reyes, F. and Luyben, W. L. (2000a). Steady-state and dynamic e.ects of design alternatives in heat-exchanger/furnace/reactor processes. Ind. Eng. Chem. Res., 39 Google Scholar, 3335–3346.
Reyes, F. and Luyben, W. L. (2000b). Steady-state and dynamic e.ects of design alternatives in heat-exchanger/furnace/reactor processes. Ind. Eng. Chem. Res., 39 Google Scholar, 3335–3346.
Ricker, N. L. (1996). Decentralized control of the Tennessee Eastman challenge process. J. Proc. Contr., 6 Google Scholar, 205.
Ricker, N. L. and Lee, J. H. (1995). Nonlinear model predictive control of the Tennessee Eastman challenge process. Comput. Chem. Eng., 19 Google Scholar, 961.
Rojas, O. J., Setiawan, R., Bao, J., and Lee, P. L. (2009). Dynamic operability analysis of nonlinear process networks based on dissipativity. AIChE J., 55 Google Scholar, 963–982.
Roman-Leshkov, Y., Chheda, J.N., and Dumesic, J.A. (2006). Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science, 312 Google Scholar, 1933–1937.
Saberi, A. and Khalil, H. (1985). Stabilization and regulation of non-linear singularly perturbed systems-composite control. IEEE Trans. Automat. Contr., 30 Google Scholar, 739–747.
Scali, C. and Ferrari, F. (1999). Performance of control systems based on recycle compensators in integrated plants. J. Proc. Contr., 9 Google Scholar, 425.
Scattolini, R. (2009). Architectures for distributed and hierarchical Model Predictive Control – a review. J. Proc. Contr., 19 Google Scholar, 723–731.
Seider, W.D., Seader, J.D., and Lewin, D.R. (1999). Process Design Principles. New York Google Scholar: Wiley.
Skogestad, S. (2000). Plantwide control: the search for the self-optimizing control structure. J. Proc. Contr., 10 Google Scholar, 487–507.
Skogestad, S. (2004). Control structure design for complete chemical plants. Comput. Chem. Eng., 28 Google Scholar, 219–234.
Sophos, A., Stephanopoulos, G., and Morari, M. (1978). Synthesis of optimum distillation sequences with heat integration schemes. In National AIChE Meeting, Miami, FL Google Scholar.
Stephanopoulos, G. (1983). Synthesis of control systems for chemical plants – a challenge for creativity. Comput. Chem. Eng., 7 Google Scholar, 331.
Stewart, B. T., Venkat, A. N., Rawlings, J.B., Wright, S. J., and Pannocchia, G. (2010). Cooperative distributed model predictive control. Syst. Contr. Lett., 59 Google Scholar, 460–469.
Sun, Y. and El-Farra, N.H. (2008). Quasi-decentralized model-based networked control of process systems. Comput. Chem. Eng., 32 Google Scholar, 2016–2029.
Sun, Y. and El-Farra, N.H. (2010). A quasi-decentralized approach for networked state estimation and control of process systems. Ind. Eng. Chem. Res., 49 Google Scholar, 7957–7971.
Sureshkumar, M. and Lee, C. K. (2009). Biocatalytic reactions in hydrophobic ionic liquids. J. Mol. Catal. B – Enzym., 60 Google Scholar, 1–12.
Tatara, E., Cinar, A., and Teymour, F. (2007). Control of complex distributed systems with distributed intelligent agents. J. Proc. Contr., 17 Google Scholar, 415–427.
Tetiker, M.D., Artel, A., Teymour, F., and Cinar, A. (2008). Control of grade transitions in distributed chemical reactor networks – an agent-based approach. Comput. Chem. Eng., 32, 19841994 Google Scholar.
Tian, Z. and Hoo, K. A. (2005). Multiple model-based control of the Tennessee–Eastman process. Ind. Eng. Chem. Res., 44 Google Scholar, 3187–3202.
Tikhonov, A. N. (1948). On the dependence of the solutions of differential equations on a small parameter. Mat. Sb., 22 Google Scholar, 193–204.
Torres, A. I., Daoutidis, P., and Tsapatsis, M. (2010). Continuous production of 5-hydroxymethylfurfural from fructose: a design case study. Energy Environ. Sci., 3 Google Scholar, 1560–1572.
Tyreus, B.D. (1999). Dominant variables for partial control. 1. A thermodynamic method for their identification. Ind. Eng. Chem. Res., 38 Google Scholar, 1432–1443.
Umeda, T., Kuriyama, T., and Ichikawa, A. (1978). A logical structure for process control system synthesis. In Proceedings of the IFAC Congress, Helsinki Google Scholar.
Underwood, A.J.V. (1970). Simple formula to calculate mean temperature difference. Chem. Eng., 77 Google Scholar, 192.
van Rantwijk, F., Madeira Lau, R., and Sheldon, R. A. (2003). Biocatalytic transformations in ionic liquids. Trends Biotechnol., 21 Google Scholar, 131–138.
Vasudevan, S. and Rangaiah, G.P. (2009). Development of guidelines for plantwide control of gas-phase industrial processes, from reactor–separator–recycle results. Ind. Eng. Chem. Res., 50 Google Scholar, 297–337.
Vasudevan, S. and Rangaiah, G.P. (2010). Criteria for performance assessment of plantwide control systems. Ind. Eng. Chem. Res., 49 Google Scholar, 5955–5970.
Venkat, A. N., Rawlings, J.B., and Wright, S. J. (2006). Implementable distributed model predictive control with guaranteed performance properties. In Proceedings of the 2006 American Control Conference, Minneapolis, MN Google Scholar.
Venkat, A. N., Hiskens, I.A., Rawlings, J.B., and Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. Contr. Syst. Tech., 16 Google Scholar, 1192–1206.
Verhulst, F. (2005). Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. New York Google Scholar: Springer.
Verykios, X. and Luyben, W. L. (1978). Steady-state sensitivity and dynamics of reactor/distillation column system with recycle. ISA Trans., 17 Google Scholar, 49–55.
Vinson, D.R. (2006). Air separation control technology. Comput. Chem. Eng., 30 Google Scholar, 1436–1446.
Vora, N.P. (2000). Nonlinear Model Reduction and Control of Multiple Time Scale Chemical Processes: Chemical Reaction Systems and Reactive Distillation Columns. PhD thesis, University of Minnesota – Twin Cities Google Scholar.
Vora, N.P. and Daoutidis, P. (2001). Dynamics and control of an ethyl acetate reactive distillation column. Ind. Eng. Chem. Res., 40 Google Scholar, 833–849.
Vora, N.P., Contou-Carrère, M. N., and Daoutidis, P. (2006). Model reduction of multiple time scale processes in non-standard singularly perturbed form. In A. N., Gorban, N., Kazantzis, I.G., Kevrekidis, H. C., Öttinger, and K., Theodoropoulos, eds., Coarse Graining and Model Reduction Approaches for Multiscale Phenomena, pp. 99–116. Berlin Google Scholar: Springer-Verlag.
Wang, K., Qian, Y., Yuan, Y., and Yao, P. (1998). Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm. Comput. Chem. Eng., 23 Google Scholar, 125–136.
Wang, P. and McAvoy, T. J. (2001). Synthesis of plantwide control systems using a dynamic model and optimization. Ind. Eng. Chem. Res., 40 Google Scholar, 5732–5742.
Wang, X.H., Li, Y.G., Hu, Y.D., and Wang, Y. L. (2008). Synthesis of heat-integrated complex distillation systems via Genetic Programming. Comput. Chem. Eng., 32 Google Scholar, 1908–1917.
Wei-Zhong, A. and Xi-Gang, Y. (2009). A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences. Comput. Chem. Eng., 33 Google Scholar, 199–212.
Westerberg, A.W. (2004). A retrospective on design and process synthesis. Comput. Chem. Eng., 28 Google Scholar, 447–458.
Wheeler, C., West, K.N., Eckert, C.A., and Liotta, C. L. (2001). Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chem. Commun. Google Scholar, 887–888.
Wu, K. and Yu, C. (1997). Operability for processes with recycles: interaction between design and operation with application to the Tennessee Eastman challenge process. Ind. Eng. Chem. Res., 36 Google Scholar, 2239–2251.
Yang, Z. and Pan, W. (2005). Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb. Tech., 37 Google Scholar, 19–28.
Ydstie, B.E. (2002). Passivity based control via the second law. Comput. Chem. Eng., 26 Google Scholar, 1037–1048.
Yee, T. F., Grossmann, I. E., and Kravanja, Z. (1990). Simultaneous optimization models for heat integration – I. Area and energy targeting and modeling of multi-stream exchangers. Comput. Chem. Eng., 14 Google Scholar, 1151–1164.
Yeomans, H. and Grossmann, I. E. (1999). Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences. Comput. Chem. Eng., 23 Google Scholar, 1135–1151.
Yu, H., Fang, H., Yao, P., and Yuan, Y. (2000). A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration. Comput. Chem. Eng., 24 Google Scholar, 2023–2035.
Zaks, A. and Klibanov, A.M. (1985). Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA, 82 Google Scholar, 3192–3196.
Zavala, V. M. and Biegler, L. T. (2009). The advanced-step NMPC controller: optimality, stability and robustness. Automatica, 45 Google Scholar, 86–93.
Zheng, A., Mahajanam, R. V., and Douglas, J. M. (1999). Hierarchical procedure for plantwide control system synthesis. AIChE J., 45 Google Scholar, 1255–1265.
Zhu, G. Y. and Henson, M.A. (2002). Model predictive control of interconnected linear and nonlinear processes. Ind. Eng. Chem. Res., 41 Google Scholar, 801–816.
Zhu, G. Y., Henson, M.A., and Ogunnaike, B. A. (2000). A hybrid model predictive control strategy for nonlinear plant-wide control. J. Proc. Contr., 10 CrossRef | Google Scholar, 449–458.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.