Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T23:31:27.612Z Has data issue: false hasContentIssue false

21 - Holocene marine diatom records of environmental change

from Part IV - Diatoms as indicators in marine and estuarine environments

Published online by Cambridge University Press:  05 June 2012

Amy Leventer
Affiliation:
Colgate University
Xavier Crosta
Affiliation:
Université Bordeaux I
Jennifer Pike
Affiliation:
Cardiff University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Atmospheric temperature records from central Greenland and Antarctic ice cores reveal a dramatic shift between the Late Pleistocene and the Holocene in terms of estimates and amplitudes of temperature change. Following recovery of these long, high-resolution ice cores in the early 1990s, initially it was believed that this shift into the Holocene involved a change from low mean temperatures with large, rapid oscillations on decadal to millennial timescales, to high mean temperatures with relatively little variability. More recently, other records from different regions of the world, together with our increased understanding of external climate forcings and feedbacks, have shown that this ice-core-derived picture of Holocene climate stability is not the case (Maslin et al., 2001; Wanner et al., 2008). Holocene climate variability appears to exhibit relatively regular patterns of change. However, these patterns of change are complex; not all changes are observed globally or synchronously (Mayewski et al., 2004). And, although the oscillations in climate during the Holocene are of lower amplitudes than those of the Late Pleistocene, they are of sufficient magnitude to cause significant perturbations to our contemporary climate and to have had an impact on human civilizations.

The primary goal of this chapter is to present a detailed view of the contribution of diatom analysis from marine sedimentary records to our understanding of climatic and environmental change during the Holocene. This chapter will provide a link between other chapters in this book that deal with diatoms as indicators of recent changes in oceanographic condition (Romero and Armand, this volume) and diatoms as indicators of paleoceanographic events (Jordan and Stickley, this volume).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 401 - 423
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrantes, F., Lopes, C., Mix, A., & Pisias, N. (2007) Diatoms in southeast Pacific surface sediments reflect environmental properties. Quaternary Science Reviews, 26, 155–69.CrossRefGoogle Scholar
Andersen, A., Koç, N., Jennings, A., & Andrews, T. (2004a). Nonuniform response of the major surface currents of the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography, 19, PA2003, DOI: 10.1029/2002PA000873.CrossRefGoogle Scholar
Andersen, C., Koç, N., & Moros, M. (2004b). A highly unstable Holocene climate in the subpolar North Atlantic; evidence from diatoms. Quaternary Science Reviews, 23, 2155–66.CrossRefGoogle Scholar
Anderson, R. Y. (1986). The varve microcosm: propagator of cyclic bedding. Paleoceanography, 1, 373–82.CrossRefGoogle Scholar
Armand, L. K. (1997). The use of diatom transfer functions in estimating sea-surface temperature and sea ice in cores from the southeast Indian Ocean. Unpublished Ph.D. thesis, Australian National University, Canberra.
Armand, L. K. (2000). An ocean of ice – advances in the estimation of past sea ice in the Southern Ocean. GSA Today, 10, 1–7.Google Scholar
Armand, L. K., Crosta, X., Romero, O., & Pichon, J.-J. (2005). The biogeography of major diatom taxa in Southern Ocean sediments. 1. Ice-related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 93–126.CrossRefGoogle Scholar
Armand, L. K. & Leventer, A. (2003). Palaeo sea ice distribution – reconstruction and palaeoclimatic significance. In Sea Ice: Physics, Chemistry and Biology, ed. Thomas, D & Dieckmann, G., Oxford: Blackwell Science Ltd, pp. 333–72.CrossRefGoogle Scholar
Armand, L. K. & Leventer, A. (2010). Palaeo sea ice distribution and reconstruction derived from the geological record. In Sea Ice: an Introduction to its Physics, Biology, Chemistry, and Geology, ed. Thomas, D & Dieckmann, G, Oxford: Blackwell Science Ltd, pp. 469–530Google Scholar
Bak, Y.-S., Yoo, K.-C., Yoon, H.I., Lee, J.-D., & Yun, H. (2007). Diatom evidence for Holocene paleoclimatic change in the South Scotia Sea, West Antarctica. Geosciences Journal, 11, 11–22.CrossRefGoogle Scholar
Bárcena, M. A., Fabrés, J., Isla, E., et al. (2006). Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeoceanographic and palaeoclimatic significance. Scientia Marina, 70, 607–19.CrossRefGoogle Scholar
Bárcena, M. A., Gersonde, R., Ledsma, S., et al. (1998). Record of Holocene glacial oscillations in Bransfield Basin as revealed by siliceous microfossil assemblages. Antarctic Science, 10, 269–85.CrossRefGoogle Scholar
Bárcena, M. A., Isla, E., Plaza, A., et al. (2002). Bioaccumulation record and paleoclimatic significance in the western Bransfield Strait. The last 2000 years. Deep Sea Research II, 49, 935–50.CrossRefGoogle Scholar
Bard, E., Raisbeck, G., Yiou, F., & Jouzel, J. (2000). Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus, 52B, 985–92.CrossRefGoogle Scholar
Barron, J.A. & Bukry, D. (2007). Solar forcing of Gulf of California climate during the past 2000 yr suggested by diatoms and silicoflagellates. Marine Micropaleontology, 62, 115–39.CrossRefGoogle Scholar
Barron, J. A., Bukry, D., & Bischoff, J. L. (2004). High resolution paleoceanography of the Guaymas Basin, Gulf of California, during the past 15 000 years. Marine Micropaleontology, 50, 185–207.CrossRefGoogle Scholar
Barron, J.A., Bukry, D., & Dean, W.E. (2005). Paleoceanographic history of the Guaymas Basin, Gulf of California, during the past 15 000 years, based on diatoms, silicoflagellates, and biogenic sediments. Marine Micropaleontology, 56, 81–102.CrossRefGoogle Scholar
Bauch, H. A. & Polyakova, Y. I. (2000). Late Holocene variations in Arctic shelf hydrology and sea ice regime: evidence from north of the Lena Delta. International Journal of Earth Sciences, 89, 569–77.CrossRefGoogle Scholar
Baumgartner, T. R. & Christensen, N. (1985). Coupling of the Gulf of California to large-scale interannual variability. Journal of Marine Research, 43, 825–48.CrossRefGoogle Scholar
Baumgartner, T. R., Ferreira-Bartrina, V., & Moreno-Hentz, P. (1991). Varve formation in the central Gulf of California: a reconsideration of the origin of the dark laminae from the 20th century varve record. In The Gulf and Peninsular Province of the Californias, ed. Dauphin, J. P. & Simoneit, B. R. T., Tulsa, OK: American Association of Petroleum Geologists, pp. 617–35.Google Scholar
Baumgartner, T., Ferreira, V., Cayan, D., & Soutar, A. (1994). Interdecadal variability of sardine and anchovy populations in the California Current. EOS, Transactions, American Geophysical Union, 75, 34.Google Scholar
Bernárdez, P., González-Álvarez, R., Francés, G., et al. (2007). Late Holocene history of the rainfall in the NW Iberian Peninsula – evidence from the marine record. Journal of Marine Systems, 72, 366–82.CrossRefGoogle Scholar
Bernárdez, P., González-Álvarez, R., Francés, G., et al. (2008). Palaeoproductivity changes and upwelling variability in the Galicia Mud Patch over the last 5000 years: geochemical and micropaleontologic evidence. The Holocene, 18, 1207–18.CrossRefGoogle Scholar
Bianchi, C. & Gersonde, R. (2004). Climate evolution at the last deglaciation: the role of the Southern Ocean. Earth and Planetary Science Letters, 228, 407–24.CrossRefGoogle Scholar
Birks, C. J. A. & Koç, N. (2002). A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea. Boreas, 31, 323–44.CrossRefGoogle Scholar
Bodén, P. & Backman, J. (1996). A laminated sediment sequence from northern North Atlantic Ocean and its climatic record. Geology, 24, 507–10.2.3.CO;2>CrossRefGoogle Scholar
Brodie, I. & Kemp, A. E. S. (1994). Variation in biogenic and detrital fluxes and formation of laminae in late Quaternary sediments from the Peruvian coastal upwelling zone. Marine Geology, 116, 385–98.CrossRefGoogle Scholar
Bull, D. & Kemp, A. E. S. (1995). Composition and origins of laminae in late Quaternary and Holocene sediments from the Santa Barbara Basin. In Proceedings of the Ocean Drilling Program, Scientific Results, 146 (2), 77–87.Google Scholar
Bull, D., Kemp, A. E. S., & Weedon, G.P. (2000). A 160-k.y.-old-record of El Niño southern Oscillation in marine production and coastal run-off from Santa Barbara Basin, California, USA. Geology, 28, 1007–10.2.0.CO;2>CrossRefGoogle Scholar
Burckle, L. H. (1984). Diatom distribution and palaeoceanographic reconstruction in the Southern Ocean – present and last glacial maximum. Marine Micropaleontology, 9, 241–261.CrossRefGoogle Scholar
Burckle, L. H. & Mortlock, R. (1998). Sea ice extent in the Southern Ocean during the last glacial maximum: another approach to the problem. Annals of Glaciology, 27, 302–4.CrossRefGoogle Scholar
Burckle, L. H., Robinson, D., & Cooke, D. (1982). Reappraisal of sea ice distribution in the Atlantic and Pacific sectors of the Southern Ocean at 18,000 yr BP. Nature, 299, 435–7.CrossRefGoogle Scholar
Burke, I. T., Grigorov, I., & Kemp, A. E. S. (2002). Microfabric study of diatomaceous and lithogenic deposition in laminated sediments from the Gotland Deep, Baltic Sea. Marine Geology, 183, 89–105.CrossRefGoogle Scholar
Caissie, B. E., Brigham-Grette, J., Lawrence, K. T., & Cook, M. S. (2006). Rising temperatures, shrinking ice: the deglaciation in the Bering Sea based on diatoms, alkenones, and oxygen isotopes. 36th Annual Arctic Workshop, University of Colorado, Boulder, CO, March 16–18.Google Scholar
Calvert, S. E. (1964). Factors affecting distribution of laminated diatomaceous sediments in the Gulf of California. In Marine Geology of the Gulf of California, ed. Andel, T. H. & Shor, G. G., Tulsa, OK: American Association of Petroleum Geologists, pp. 311–30.Google Scholar
Calvert, S. E. (1966). Origin of diatom-rich varved sediments from the Gulf of California. Journal of Geology, 74, 546–65.CrossRefGoogle Scholar
Chang, A. S. & Patterson, R. T. (2005). Climate shift at 4400 years BP: evidence from high-resolution diatom stratigraphy, Effingham Inlet, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 226, 72–92.CrossRefGoogle Scholar
Chang, A. S., Patterson, R.T., & McNeely, R. (2003). Seasonal Sediment and Diatom Record from Late Holocene Laminated Sediments, Effingham Inlet, British Columbia, Canada. Palaios, 18, 477–94.2.0.CO;2>CrossRefGoogle Scholar
Cremer, H., Gore, D., Kirkup, H., et al. (2001). The late Quaternary environmental history of the Windmill Islands, east Antarctica – initial evidence from the diatom record. In Proceedings of the 16th International Diatom Symposium, Athens 2000, ed. Economou-Amilli, A., Athens: University of Athens, pp. 471–81.Google Scholar
Cremer, H., Roberts, D., McMinn, A., Gore, D., & Melles, M. (2003). The Holocene diatom flora of marine bays in the Windmill Islands, East Antarctica. Botanica Marina, 46, 82–106.CrossRefGoogle Scholar
Crosta, X., Debret, M., Denis, D., Courty, M. A., & Ther, O. (2007). Holocene long- and short-term climate changes off Adélie Land, East Antarctica. Geochemistry, Geophysics, Geosystems, 8, Q11009, DOI:10.1029/2007GC001718.CrossRefGoogle Scholar
Crosta, X., Denis, D., & Ther, O. (2008). Sea ice seasonality during the Holocene, Adélie Land, East Antarctica. Marine Micropaleontology, 66, 222–32.CrossRefGoogle Scholar
Crosta, X. & Koç, N. (2007). Diatoms: from micropaleontology to isotope geochemistry. In Proxies in Late Cenozoic Paleoceanography, ed. Hillaire-Marcel, C. & Vernal, A., Developments in Marine Geology Series, volume 1, Amsterdam: Elsevier, pp. 327–69.CrossRefGoogle Scholar
Crosta, X., Pichon, J.-J., & Burckle, L. H. (1998a). Application of modern analog technique to marine Antarctic diatoms: reconstruction of maximum sea ice extent at the last glacial maximum. Paleoceanography, 13, 286–97.CrossRefGoogle Scholar
Crosta, X., Pichon, J.-J., & Burckle, L.H. (1998b). Reappraisal of Antarctic seasonal sea ice at the last glacial maximum. Geophysical Research Letters, 25, 2703–6.CrossRefGoogle Scholar
Crosta, X., Pichon, J.-J., & Labracherie, M. (1997). Distribution of Chaetoceros resting spores in modern peri-Antarctic sediments. Marine Micropaleontology, 29, 283–99.CrossRefGoogle Scholar
Crosta, X., Romero, O., Armand, L.K., & Pichon, J.-J. (2005). The biogeography of major diatom taxa in Southern Ocean sediments. 2. Open-ocean related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 66–92.CrossRefGoogle Scholar
Cunningham, W. L., Leventer, A., Andrews, J. T., Jennings, A.E., & Litch, K. J. (1999). Late Pleistocene–Holocene marine conditions in the Ross Sea, Antarctica: evidence from the diatom record. The Holocene, 9, 129–39.CrossRefGoogle Scholar
Curran, M. A. J., Ommen, T. D., Morgan, V. I., Phillips, K. L., & Palmer, A. S. (2003). Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302, 1203–6.CrossRefGoogle ScholarPubMed
Damon, E. & Laut, P. (2004). Pattern of strange errors plagues solar activity and terrestrial climate data. Eos, Transactions, American Geophysical Union, 39, 370–4.CrossRefGoogle Scholar
Sève, M. A. (1999). Transfer function between surface diatom assemblages and sea-surface temperature and salinity of the Labrador Sea. Marine Micropaleontology, 36, 249–67.CrossRefGoogle Scholar
Vries, T. J. & Schrader, H. (1981). Variation of upwelling/oceanic conditions during the latest Pleistocene through Holocene off the central Peruvian coast: a diatom record. Marine Micropaleontology, 6, 157–67.CrossRefGoogle Scholar
Dean, J. M. & Kemp, A. E. S. (2004). A 2100 year BP record of the Pacific decadal Oscillation, El Niño Southern Oscillation and Quasi-biennial Oscillation in marine production and fluvial input from Saanich Inlet, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 207–29.CrossRefGoogle Scholar
Dean, J. M., Kemp, A. E. S., Bull, D., et al. (1999). Taking varves to bits: scanning electron microscopy in the study of laminated sediments and varves. Journal of Paleolimnology, 22, 121–36.CrossRefGoogle Scholar
Dean, J. M., Kemp, A. E. S., & Pearce, R.B. (2001). Palaeo-flux records from electron microscope studies of Holocene laminated sediments, Saanich Inlet, British Columbia. Marine Geology, 174, 139–58.CrossRefGoogle Scholar
Denis, D., Crosta, X., Schmidt, S., et al. (2009a). Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica. Quaternary Science Reviews, 28, 1291–303.CrossRefGoogle Scholar
Denis, D., Crosta, X., Schmidt, S., et al. (2009b). Holocene productivity changes off Adélie Land (East Antarctica). Paleoceanography, 24, PA3207, DOI:10.1029/2008PA001689.CrossRefGoogle Scholar
Denis, D., Crosta, X., Zaragosi, S., et al. (2006). Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adélie Land, East Antarctica. The Holocene, 16, 1137–47.CrossRefGoogle Scholar
Domack, E., Duran, D., Leventer, A., et al. (2005). Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436, 681–5.CrossRefGoogle Scholar
Domack, E., Leventer, A., Dunbar, R., et al. (2001). Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene, 11 (1), 1–9.CrossRefGoogle Scholar
Domack, E., Leventer, A, Root, S., et al. (2003). Marine sediment record of natural environmental variability and recent warming in the Antarctic Peninsula. AGU Antarctic Research Series, 79, 205–44.Google Scholar
Donegan, D. & Schrader, H. (1982). Biogenic and abiogenic components of laminated hemipelagic sediments in the central Gulf of California. Marine Geology, 48, 215–37.CrossRefGoogle Scholar
Eiríksson, J., Bartels-Jønsdøttir, H. B., Cage, A. G., et al. (2006). Variability of the North Atlantic Current during the last 2000 years based on shelf bottom water and sea surface temperatures along an open ocean/shallow marine transect in western Europe. The Holocene, 16, 1017–29.CrossRefGoogle Scholar
Enomoto, H. & Ohmura, A. (1990). The influences of atmospheric half-yearly cycle on the sea ice extent in the Antarctic. Journal of Geophysical Research, 95(C6), 9497–511.CrossRefGoogle Scholar
Finocchiaro, F., Langone, L., Colizza, E., et al. (2005). Record of the early Holocene warming in a laminated sediment core from Cape Hallett Bay (Northern Victoria Land, Antarctica). Global and Planetary Change, 45, 193–206.CrossRefGoogle Scholar
Friis-Christensen, E. (2000). Solar variability and climate: a summary. Space Science Reviews, 94, 411–21.CrossRefGoogle Scholar
Fryxell, G. A. & Prasad, A. K. S. K. (1990). Eucampia antarctica var. recta (Mangin) stat. nov. (Biddulphiaceae, Bacillariophyceae): life stages at the Weddell Sea ice edge. Phycologia, 29, 27–38.CrossRefGoogle Scholar
Gardner, J. V. & Hemphill-Haley, E. (1986). Evidence for a stronger oxygen-minimum zone off central California during late Pleistocene to early Holocene. Geology, 14, 691–4.2.0.CO;2>CrossRefGoogle Scholar
Gersonde, R. & Zielinski, U. (2000). The reconstruction of late Quaternary Antarctic sea-ice distribution – the use of diatoms as a proxy for sea-ice. Palaeogeography, Palaeoclimatology, Palaeoecology, 162, 263–86.CrossRefGoogle Scholar
Gil, I. M., Abrantes, F., & Hebbeln, D. (2006). The North Atlantic Oscillation forcing through the last 2000 years: spatial variability as revealed by high resolution marine diatom records from N and SW Europe. Marine Micropaleontology, 60, 113–29.CrossRefGoogle Scholar
Gran, H. H. (1904). Diatomaceae from the ice-floes and plankton of the Arctic Ocean. In The Norwegian North Polar Expedition 1893–1896, ed. Nansen, F., London: Longman, vol. 4, pp. 1–74.Google Scholar
Grigorov, I., Pearce, R. B., & Kemp, A. E. S. (2002). Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093. Deep-Sea Research II, 49, 3391–407.CrossRefGoogle Scholar
Grimm, K. A. (1992). High-resolution imaging of laminated biosiliceous sediments and their paleoceanographic significance (Quaternary, site 798, Oki Ridge, Japan Sea). Proceedings of the Ocean Drilling Program, Scientific Results, 127–128, 547–57.Google Scholar
Grimm, K. A., Lange, C.B., & Gill, A. S. (1996). Biological forcing of hemipelagic sedimentary laminae: evidence from ODP Site 893, Santa Barbara Basin, California. Journal of Sedimentary Research, 66, 613–624.Google Scholar
Grimm, K. A., Lange, C. M., & Gill, A. S. (1997). Self-sedimentation of phytoplankton blooms in the geologic record. Sedimentary Geology, 110, 151–61.CrossRefGoogle Scholar
Haig, J. D. (1999). Modelling the impact of solar variability on climate. Journal of Atmospheric and Solar-Terrestrial Physics, 61, 63–72.CrossRefGoogle Scholar
Hay, M. B., Dallimore, A., Thomson, R. E., Calvert, S. E., & Pienitz, R. (2007). Siliceous microfossil record of late Holocene oceanography and climate along the west coast of Vancouver Island, British Columbia (Canada). Quaternary Research, 67, 33–49.CrossRefGoogle Scholar
Heroy, D. C., Sjunneskog, C., & Anderson, J. B. (2007). Holocene climate change in the Bransfield Basin, Antarctic Peninsula: evidence from sediment and diatom analysis. Antarctic Science, 20, 69–87.Google Scholar
Hodell, D. A., Kanfoush, S. L., Shemesh, A., et al. (2001). Abrupt cooling of Antarctic surface waters and sea ice expansion in the South Atlantic sector of the Southern Ocean at 5000 cal yr BP. Quaternary Research, 56, 191–8.CrossRefGoogle Scholar
Horner, R. A. & Alexander, V. (1972). Algal populations in Arctic sea ice: an investigation of heterotrophy. Limnology and Oceanography, 17, 454–8.CrossRefGoogle Scholar
Hughen, K., Overpeck, J. T., Peterson, L. C., & Anderson, R. (1996). Varve analysis and palaeoclimate from sediments of the Cariaco Basin, Venezuela. In Palaeoclimatology and Palaeoceanography from Laminated Sediments, ed. A. E. S. Kemp, Bath: Geological Society of London, pp. 171–83.Google Scholar
Jensen, K.G., Kuijpers, A., Koc, N., & Heinemeier, J. (2004). Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord. The Holocene, 14, 152–64.CrossRefGoogle Scholar
Jiang, H., Eiriksson, J., Schultz, M., Knudsen, K. L. & Seidenkrantz, M. S. (2005). Evidence for solar forcing of sea surface temperature on the North Icelandic Shelf during the late Holocene. Geology, 33, 73–6.CrossRefGoogle Scholar
Jiang, H., Seidenkrantz, M.-S., & Knudsen, K. L. (2002). Late-Holocene summer sea-surface temperatures based on a diatom record from the North Icelandic Shelf. The Holocene, 12, 137–47.Google Scholar
Justwan, A. & Koç, N. (2008). A diatom based transfer function for reconstructing sea ice concentrations in the North Atlantic. Marine Micropaleontology, 66, 264–78.CrossRefGoogle Scholar
Justwan, A., Koç, N., & Jennings, A. E. (2008). Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions. Quaternary Science Reviews, 27, 1571–82.CrossRefGoogle Scholar
Kaczmarska, I., Barbrick, N. E., Ehrman, J. M., & Cant, G. P. (1993). Eucampia index as an indicator of the Late Pleistocene oscillations of the winter sea ice extent at the ODP Leg 119 Site 745B at the Kerguelen Plateau. Hydrobiologia, 269–270, 103–12.CrossRefGoogle Scholar
Kemp, A. E. S. (1990). Sedimentary fabrics and variation in lamination style in Peru continental margin upwelling sediments. Proceedings of the Ocean Drilling Program, Scientific Results, 112, 43–58.Google Scholar
Kemp, A. E. S. (2003). Evidence for abrupt climate changes in annually laminated marine sediments. Philosophical Transactions of the Royal Society, London, A 361, 1851–70.CrossRefGoogle ScholarPubMed
Kemp, A. E. S. & Baldauf, J. G. (1993). Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 362, 141–4.CrossRefGoogle Scholar
Kemp, A. E. S., Pike, J., Pearce, R. B., & Lange, C.B. (2000). The “fall dump” – a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Research II, 47, 2129–54.CrossRefGoogle Scholar
Knudsen, K. L., Jiang, H., Jansen, E., et al. (2004). Environmental changes off north Iceland during the deglaciation and the Holocene: foraminfera, diatoms and stable isotopes. Marine Micropaleontology, 50, 273–305.CrossRefGoogle Scholar
Koç, N. & Jansen, E. (1994). Response of the high latitude Northern Hemisphere to orbital climate forcing: evidence from the GIN-Seas. Geology, 22, 523–526.2.3.CO;2>CrossRefGoogle Scholar
Koç, N., Jansen, E., & Haflidason, H. (1993). Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms. Quaternary Science Reviews, 12, 115–40.CrossRefGoogle Scholar
Koç, N., Jansen, E., Hald, M., & Labeyrie, L. (1996). Late glacial-Holocene sea-surface temperatures and gradients between the North Atlantic and the Norwegian Sea: implications for the Nordic heat pump. Geological Society Special Publication, 111, 177–85.CrossRefGoogle Scholar
Koç Karpuz, N. & Jansen, E. (1992). A high resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climatic changes. Paleoceanography, 7, 499–520.CrossRefGoogle Scholar
Koç Karpuz, N. & Schrader, H. (1990). Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea. Paleoceanography, 5, 557–80.CrossRefGoogle Scholar
Kohly, A. (1998). Diatom flux and species composition in the Greenland Sea and the Norwegian Sea in 1991–1992. Marine Geology, 145, 293–312.CrossRefGoogle Scholar
Koizumi, I. (2008). Diatom-derived SSTs (Td' ratio) indicate warm seas off Japan during the middle Holocene (8.2–3.3 kyr BP). Marine Micropaleontology, 69, 263–81.CrossRefGoogle Scholar
Koizumi, I., Shiga, K., Irino, T., & Ikehara, M. (2003). Diatom record of the late Holocene in the Okhotsk Sea. Marine Micropaleontology, 49, 139–56.CrossRefGoogle Scholar
Lange, C. B., Berger, W. H., Burke, S. K., et al. (1987). El Niño in Santa Barbara Basin: diatom, radiolarian and foraminiferan responses to the “1983 El Niño” event. Marine Geology, 78, 153–60.CrossRefGoogle Scholar
Lange, C. B., Burke, S.K., & Berger, W.H. (1990). Biological production off Southern California is linked to climatic change. Climatic Change, 16, 319–29.CrossRefGoogle Scholar
Lange, C. B. & Schimmelmann, A. (1994). Seasonal resolution of laminated sediments in Santa Barbara Basin: its significance in paleoclimatic studies. In Proceedings of the Tenth Annual Pacific Climate (PACLIM) Workshop, April 4–7, 1993, ed. Redmond, K. T. & Tharp, V. L.. California Department of Water Resources, Interagency Ecological Studies Program, Technical Report 36, pp. 83–92.Google Scholar
Lean, J. & Rind, D. (1998). Climate forcing by changing solar radiation. Journal of Climate, 11, 3069–94.2.0.CO;2>CrossRefGoogle Scholar
Lean, J. & Rind, D. (1999). Evaluating Sun–climate relationships since the Little Ice Age. Journal of Atmospheric and Solar–Terrestrial Physics, 61, 1591–4.CrossRefGoogle Scholar
Lebreiro, S. M., Francés, G., Abrantes, F., et al. (2006). Climate change and coastal hydrographic response along the Iberian margin (Tagus Prodelta and Muros Ría) during the last two millenia. The Holocene, 16, 1003–15.CrossRefGoogle Scholar
Lemke, P., Ren, J., Alley, R. B., et al. (2007). Observations: changes in snow, ice and frozen ground. In Climate Change 2007: The Physical Science Basis. Contributions of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., et al., Cambridge: Cambridge University Press, pp. 337–83.Google Scholar
Leventer, A. (1998). The fate of sea ice diatoms and their use as paleoenvironmental indicators. In Antarctic Sea Ice: Biological Processes, ed. Lizotte, M. P. & Arrigo, K. R., American Geophysical Union Antarctic Research Series 73, pp. 121–37.Google Scholar
Leventer, A., Domack, E., Barkoukis, A., McAndrews, B., & Murray, J. (2002). Laminations from the Palmer Deep: a diatom-based interpretation. Paleoceanography, 17, 1–15.CrossRefGoogle Scholar
Leventer, A., Domack, E., Dunbar, R., et al. (2006). Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today, 16, DOI:10.1130/GSAT01612A.1.CrossRefGoogle Scholar
Leventer, A., Domack, E. W., Ishman, S. E., et al. (1996). Productivity cycles of 200–300 years in the Antarctic Peninsula region: understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. Geological Society of America, Bulletin, 108, 1626–44.2.3.CO;2>CrossRefGoogle Scholar
Leventer, A. & Dunbar, R. B. (1988). Recent diatom record of McMurdo Sound, Antartcica: implications for the history of sea ice extent. Paleoceanography, 3, 259–74.CrossRefGoogle Scholar
Leventer, A., Dunbar, R., & DeMaster, D. J. (1993). Diatom evidence for late Holocene climatic events in Granite Harbor, Antarctica. Paleoceanography, 8, 373–86.CrossRefGoogle Scholar
Machado, E. (1993). Production, sedimentation and dissolution of biogenic silica in the northern North Atlantic. Ph. D. thesis, Christian Albrechts University, Kiel, Germany.
Maddison, E. J., Pike, J., Leventer, A., & Domack, E. W. (2005). Deglacial seasonal and sub-seasonal diatom record from Palmer Deep, Antarctica. Journal of Quaternary Science, 20, 435–46.CrossRefGoogle Scholar
Maddison, E. J., Pike, J., Leventer, A., et al. (2006). Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East Antarctica. Marine Micropaleontology, 60, 66–88.CrossRefGoogle Scholar
Marsh, N. D. & Svensmark, H. (2000). Low cloud properties influenced by cosmic rays. Physical Review Letters, 85, 5004–7.CrossRefGoogle ScholarPubMed
Maslin, M. A., Stickley, C. E., & Ettwein, V. J. (2001). Palaeoceanography: Holocene climate variability. In Encyclopedia of Ocean Sciences, ed. Steele, J., Thorpe, S., & Turekian, K., London: Academic Press.Google Scholar
Masson, V.Vimeux, F., Jouzel, J., et al. (2000). Holocene climate variability in Antarctica based on 11 ice-core records. Quaternary Research, 54, 348–58.CrossRefGoogle Scholar
Mayewski, P. A., Rohling, E. E., Stager, J. C., et al. (2004). Holocene climate variability. Quaternary Research, 62, 243–55.CrossRefGoogle Scholar
McMinn, A. (2000). Late Holocene increase in sea ice extent in fjords of the Vestfold Hills, eastern Antarctica. Antarctic Science, 12, 80–8.CrossRefGoogle Scholar
McMullen, K., Domack, E., Leventer, A., et al. (2006). Glacial morphology and sediment formation in the Mertz Trough, East Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 169–80.CrossRefGoogle Scholar
Møller, H. S., Jensen, K. G., Kuijpers, A., et al. (2006). Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record. The Holocene, 16, 685–95.CrossRefGoogle Scholar
Moros, M., Andrews, J. T., Eberl, D. E., & Jansen, E. (2006). Holocene history of drift ice in the northern North Atlantic: evidence for different spatial and temporal modes. Paleoceanography, 21, DOI: 10.1029/2005PA001214.CrossRefGoogle Scholar
Nielsen, S. H. H., Koç, N., & Crosta, X. (2004). Holocene climate in the Atlantic sector of the Southern Ocean: controlled by insolation or oceanic circulation? Geology, 32, 317–20.CrossRefGoogle Scholar
Patterson, R. T., Prokoph, A., Reinhardt, E., & Roe, H. M. (2007). Climate cyclicity in late Holocene anoxic marine sediments from the Seymour-Belize Inlet Complex, British Columbia. Marine Geology, 242, 123–40.CrossRefGoogle Scholar
Pearce, R. B., Kemp, A. E. S., Koizumi, I., et al. (1998). A lamina-scale SEM-based study of a late Quaternary diatom-ooze sapropel from the Mediterranean Ridge, ODP Site 971. Proceedings of the Ocean Drilling Program, Scientific Results, 160, 333–48.Google Scholar
Pike, J., Crosta, X., Maddison, E. J., et al. (2009). Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the late Quaternary. Marine Micropaleontology, 73, 14–25.CrossRefGoogle Scholar
Pike, J. & Kemp, A. E. S. (1996). Preparation and analysis techniques for studies of laminated sediments. Geological Society of London, Special Publication, 116, 37–48.CrossRefGoogle Scholar
Pike, J. & Kemp, A. E. S. (1997). Early Holocene decadal-scale ocean variability recorded in Gulf of California laminated sediments. Paleoceanography, 12, 227–38.CrossRefGoogle Scholar
Pike, J. & Kemp, A. E. S. (1999). Diatom mats from Gulf of California: Implications for silica burial and paleoenvironmental interpretation of laminated sediments. Geology, 27, 311–14.2.3.CO;2>CrossRefGoogle Scholar
Pike, J. & Stickley, C. E. (2007). Diatom records: marine laminated sequences. In Encyclopedia of Quaternary Science, ed. Elias, S., Amsterdam: Elsevier, pp. 557–67.CrossRefGoogle Scholar
Polyakova, Y. I. & Stein, R. (2004). Holocene paleoenvironmental implications of diatom and organic carbon records from the southeastern Kara Sea (Siberian margin). Quaternary Research, 62, 256–66.CrossRefGoogle Scholar
Ran, L., Jiang, H., Knudsen, K. L., Eiríksson, J., & Gu, Z. (2006). Diatom response to the Holocene climatic optimum on the North Icelandic Shelf. Marine Micropaleontology, 60, 226–41.CrossRefGoogle Scholar
Rathburn, A. E., Pichon, J.-J., Ayress, M. A., & DeDeckker, P. (1997). Microfossil and stable-isotope evidence for changes in late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 131, 485–510.CrossRefGoogle Scholar
Rebolledo, L., Sepúlveda, J., Lange, C. B., et al. (2008). Late Holocene marine productivity changes in northern Patagonia-Chile inferred from a multi-proxy analysis of Jacaf channel sediments. Estuarine, Coastal and Shelf Science, 80, 314–22.CrossRefGoogle Scholar
Reid, G. C. (2000). Solar variability and the Earth's climate: introduction and review. Space Science Reviews, 94, 1–11.CrossRefGoogle Scholar
Reimers, C. E., Lange, C. B., Tabak, , M., & Bernhard, J. M. (1990). Seasonal spillover and varve formation in the Santa Barbara Basin, California. Limnology and Oceanography, 35, 1577–85.CrossRefGoogle Scholar
Ren, J., Jiang, H., Seidnekrantz, M.-S., & Kuijpers, A. (2009). A diatom-based reconstruction of early Holocene hydrographic and climatic change in a southwest Greenland fjord. Marine Micropaleontology, 70, 166–76.CrossRefGoogle Scholar
Renssen, H., Goosse, H., & Muscheler, R. (2006). Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past, 2, 79–90.CrossRefGoogle Scholar
Romero, O. E., Kim, J.-H., & Hebbeln, D. (2006). Paleoproductivity evolution off central Chile from the last glacial maximum to the early Holocene. Quaternary Research, 65, 519–25.CrossRefGoogle Scholar
Ryu, E., Yi, S., & Lee, S.-J. (2005). Late Pleistocene–Holocene paleoenvironmental changes inferred from the diatom record of the Ulleung Basin, East Sea (Sea of Japan), Marine Micropaleontology, 55, 157–82.CrossRefGoogle Scholar
Sancetta, C. (1979). Oceanography of the North Pacific during the last 18,000 years: evidence from fossil diatoms. Marine Micropaleontology, 4, 103–23.CrossRefGoogle Scholar
Sancetta, C. (1981). Oceanographic and ecologic significance of diatoms in surface sediments of the Bering and Okhotsk seas. Deep-Sea Research, 28, 789–817.CrossRefGoogle Scholar
Sancetta, C. (1982). Distribution of diatom species in surface sediments of the Bering and Okhotsk seas. Marine Micropaleontology, 28, 221–57.CrossRefGoogle Scholar
Sancetta, C. (1995). Diatoms in the Gulf of California: seasonal flux patterns and the sediment record for the past 15,000 years. Paleoceanography, 10, 67–84.CrossRefGoogle Scholar
Schimmelmann, A. & Lange, C. B. (1996). Tales of 1001 varves: a review of Santa Barbara Basin sediment studies. Geological Society of London, Special Publication, 116, 121–41.CrossRefGoogle Scholar
Schrader, H. & Baumgartner, T. (1983). Decadal variation in upwelling in the central Gulf of California. In Coastal Upwelling, its Sediment Record. Part B: Sedimentary Records of Ancient Coastal Upwelling, ed. Thiede, J. & Suess, E., New York, NY: Plenum Press, pp. 247–76.CrossRefGoogle Scholar
Schrader, H., Isrenn, K., Swanberg, N., Paetzel, M., & Sæthre, T. (1993). Early Holocene diatom pulse in the Norwegian Sea and its paleoceanographic significance. Diatom Research, 8, 117–30.CrossRefGoogle Scholar
Seeberg-Elverfeldt, I. A., Lange, C. B., Arz, H. W., Pätzold, J., & Pike, J. (2004). The significance of diatoms in the formation of laminated sediments of the Shaban Deep, northern Red Sea. Marine Geology, 209, 279–301.CrossRefGoogle Scholar
Seidenkrantz, M.-S., Aagaard-Sørensen, S., Sulsbrück, H., et al. (2007). Hydrography and climate of the last 4400 years in a SW Greenland fjord: implications for Labrador Sea palaeoceanography. The Holocene, 17, 387–401.CrossRefGoogle Scholar
Shevenell, A. E., Domack, E. W., & Kernan, G. M. (1996). Record of Holocene palaeoclimate change along the Antarctic Peninsula: evidence from glacial marine sediments, Lallemand Fjord. Papers and Proceedings of the Royal Society of Tasmania, 130, 55–64.Google Scholar
Shiga, K. & Koizumi, I. (2000). Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records. Marine Micropaleontology, 38, 91–117.CrossRefGoogle Scholar
Shimada, C., Ikehara, K., Tanimura, Y., & Hasegawa, S. (2004). Millennial-scale variability of Holocene hydrography in the southwestern Okhotsk Sea: diatom evidence. The Holocene, 14, 641–50.CrossRefGoogle Scholar
Shimada, C., Murayama, M., Aoki, K., et al. (2000). Holocene paleoceanography in the SW part of the Sea of Okhotsk: a diatom record. Quaternary Research, 39, 451–60.Google Scholar
Shindell, D., Rind, D., Balachandran, N., Lean, J., & Lonergan, P. (1999). Solar cycle variability, ozone, and climate. Nature, 284, 305–8.Google ScholarPubMed
Simmonds, I. (1996). Climatic role of southern hemisphere extratropical cyclones and their relationships with sea-ice. Papers and Proceedings of the Royal Society of Tasmania, 130, 95–100.Google Scholar
Sjunneskog, C. & Taylor, F. (2002). Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098). I: total diatom abundance. Paleoceanography, 17, DOI: 10.1029/2000PA000563.CrossRefGoogle Scholar
Stickley, C. E., Pike, J., Leventer, A., et al. (2005). Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 290–310.CrossRefGoogle Scholar
Stickley, C. E., Pike, J., & Leventer, A. (2006). Productivity events of the marine diatom Thalassiosira tumida (Janisch) Hasle recorded in deglacial varves from the East Antarctic margin. Marine Micropaleontology, 59, 184–96.CrossRefGoogle Scholar
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: faster than forecast. Geophysical Research Letters. 34, L09501, DOI: 10.1029/2007GL029703.CrossRefGoogle Scholar
Stuiver, M. & Braziunas, T. F. (1989). Atmospheric 14C and century scale solar oscillations, Nature, 338, 405–8.CrossRefGoogle Scholar
Stuiver, M. & Braziunas, T. F. (1993). Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon, 35, 137–89.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., & Braziunas, T. F. (1998). High precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40, 1127–51.CrossRefGoogle Scholar
Suess, H. E. & Linick, T. W. (1990). The 14C record in bristlecone pine wood of the past 8000 yr based on the dendrochronology of the late C. W. Ferguson. Royal Society of London Philosophical Transactions, ser. A, 330, 403–12.CrossRefGoogle Scholar
Svensmark, H. (2000). Cosmic rays and Earth's climate. Space Science Reviews, 93, 175–95.CrossRefGoogle Scholar
Svensmark, H. & Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage: a missing link in solar–climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1225–32.CrossRefGoogle Scholar
Taylor, F. & McMinn, A. (2001). Evidence from diatoms for Holocene climate fluctuation along the East Antarctic margin. The Holocene, 11(4), 455–66.CrossRefGoogle Scholar
Taylor, F. & McMinn, A. (2002). Late Quaternary diatom assemblages from Prydz Bay, eastern Antarctica. Quaternary Research, 57, 151–61.CrossRefGoogle Scholar
Taylor, F. & Sjunneskog, C. (2002). Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098). 2. Diatom assemblages. Paleoceanography, 17, DOI: 10.1029/2000PA000564.CrossRefGoogle Scholar
Taylor, F., Whitehead, J., & Domack, E. (2001). Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record. Marine Micropaleontology, 41, 25–43.CrossRefGoogle Scholar
Thunell, R., Pride, C., Tappa, E., & Muller-Karger, F. (1993). Varve formation in the Gulf of California: insights from time series sediment trap sampling and remote sensing. Quaternary Science Reviews, 12, 451–64.CrossRefGoogle Scholar
Geel, B., Raspopov, O. M., Renssen, H., et al. (1999). The role of solar forcing upon climate change. Quaternary Science Reviews, 18, 331–8.CrossRefGoogle Scholar
Villareal, T. A. & Fryxell, G. A. (1983). Temperature effects on the valve structure of the bipolar diatoms Thalassiosira antarctica and Porosira glacialis. Polar Biology, 2, 163–9.CrossRefGoogle Scholar
Wanner, H., Beer, J., Bütikofer, J., et al. (2008). Mid- to late Holocene climate change: an overview. Quaternary Science Reviews, 27, 1791–828.CrossRefGoogle Scholar
Williams, K. M. (1986). Recent Arctic marine diatom assemblages from bottom sediments in Baffin Bay and Davis Strait. Marine Micropaleontology, 10, 327–41.CrossRefGoogle Scholar
Williams, K. M. (1990). Late Quaternary palaeoceanography of the western Baffin Bay region: evidence from fossil diatoms. Canadian Journal of Earth Sciences, 27, 1487–94.CrossRefGoogle Scholar
Williams, K. M. (1993). Ice sheet and ocean interactions, margin of the East Greenland Ice Sheet (14 ka to present): diatom evidence. Paleoceanography, 8, 69–83.CrossRefGoogle Scholar
Witak, M., Wachnicka, A., Kuijpers, A., et al. (2005). Holocene North Atlantic surface circulation and climatic variability: evidence from diatom records. The Holocene, 15, 85–96.CrossRefGoogle Scholar
Witon, E., Malmgren, B., Witkowski, A., & Kuijpers, A. (2006). Holocene marine diatoms from the Faeroe Islands and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 487–509.CrossRefGoogle Scholar
Wyrtki, K. (1962). The oxygen minima in relation to ocean circulation. Deep-Sea Research, 9, 11–23.Google Scholar
Yoon, H. I., Park, B.-K., Kim, Y., & Kim, C. Y. (2002). Glaciomarine sedimentation and its paleoceanographic implications on the Antarctic Peninsula shelf over the last 15 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 235– 54.CrossRefGoogle Scholar
Zielinski, U. & Gersonde, R. (1997). Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 213–50.CrossRefGoogle Scholar
Zielinski, U., Gersonde, R., Sieger, R., & Futterer, D. (1998). Quaternary surface water temperature estimations: calibration of a diatom transfer function for the Southern Ocean. Paleoceanography, 13, 365–83.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×