Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T21:44:07.083Z Has data issue: false hasContentIssue false

5 - Pattern of Human Cementum Deposition with a Special Emphasis on Hypercementosis

from Part I - The Biology of Cementum

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

The teeth are an ideal medium for recording information on the evolution, diet, age, lifestyle, culture, social behavior, and activities of populations. The general health of an individual or a group can also be assessed by studying bucco-dental pathologies that concern the enamel, the dentin, the alveolar bone, and the cementum. However, structural changes in this last tissue are barely discernible and are much less studied than changes in other tissues. The main objective of this chapter is to review the pattern of human cementum deposition with a special emphasis on hypercementosis. The first part is devoted to present the physiological factors that modulate cementum continuous apposition. The second part is dedicated to the pathological factors that are likely to disturb growth. The last part explores a particular growth pattern of cementum, hypercementosis, and its significance in past populations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azaz, B., Michaeli, Y., and Nitzan, D.. 1977. Aging of tissues of the roots of nonfunctional human teeth (impacted canines). Oral Surgery, Oral Medicine, Oral Pathology 43(4): 572–8.CrossRefGoogle ScholarPubMed
Azaz, B., Ulmansky, M., Moshev, R., and Sela, J.. 1974. Correlation between age and thickness of cementum in impacted teeth. Oral Surgery, Oral Medicine, Oral Pathology 38(5): 691–4.CrossRefGoogle ScholarPubMed
Bercy, P., and Frank, R. M.. 1980. Microscopie électronique à balayage de la surface du cément humain dans diverses conditions physiologiques et pathologiques. Journal de Biologie Buccale 8(4): 353–73.Google Scholar
Bilgin, E., Gürgan, C. A., Arpak, M. N., Bostanci, H. S., and Güven, K.. 2004. Morphological changes in diseased cementum layers: A scanning electron microscopy study. Calcified Tissue International 74(5): 476–85.Google Scholar
Bosshardt, D. D., and Nanci, A.. 2003. Immunocytochemical characterization of ectopic enamel deposits and cementicles in human teeth. European Journal of Oral Science 111(1): 51–9.CrossRefGoogle ScholarPubMed
Bosshardt, D. D., and Schroeder, H. E.. 1992. Initial formation of cellular intrinsic fiber cementum in developing human teeth. Cell & Tissue Research 267(2): 321–35.Google Scholar
Bosshardt, D. D., and Schroeder, H. E. 1994. How repair cementum becomes attached to the resorbed roots of human permanent teeth. Acta Anatomica 150(4): 253–66.Google Scholar
Bosshardt, D. D., and Selvig, K. A.. 1997. Dental cementum: The dynamic tissue covering of the root. Periodontology 2000 13: 4175.Google Scholar
Brau, E. 1986. Pathologie du cément. Actualités Odonto-Stomatologiques 40(156): 603–17.Google Scholar
Chan, E., and A. Darendeliler, M.. 2006. Physical properties of root cementum: Part 7. Extent of root resorption under areas of compression and tension. American Journal of Orthodontics and Dentofacial Orthopedics 129(4): 504–10.CrossRefGoogle ScholarPubMed
Comelli, L., Carlos, R., Lauand, F., Marcantonio, E., and Neto, C. B.. 1978. A contribution to the histological study of hypercementosis using metal staining. Journal of Dental Research 57(1): 146–52.Google Scholar
Comuzzie, A. G., and Gentry Steele, D.. 1989. Enlarged occlusal surfaces on first molars due to severe attrition and hypercementosis: Examples from prehistoric coastal populations of Texas. American Journal of Physical Anthropology 78(1): 915.Google Scholar
Consolaro, A., De Oliveira, L.U., and Vasconcelos, M. H. F.. 1987. Determinação da prevalência da hipercementose e suas implicações etiopatogênicas. Odontologia Moderna 14(3): 614.Google Scholar
Corruccini, R. S., Jacobi, K. P., Handler, J. S., and Aufderheide, A. C.. 1987. Implications of tooth root hypercementosis in a Barbados slave skeletal collection. American Journal of Physical Anthropology 74(2): 179–84.Google Scholar
Craddock, H. L., Youngson, C. C., Manogue, M., and Blance, A.. 2007. Occlusal changes following posterior tooth loss in adults. Part 1: A study of clinical parameters associated with the extent and type of supraeruption in unopposed posterior teeth. Journal of Prosthodontics 16(6): 485–94.Google Scholar
Dastmalchi, R., Polson, A., Bouwsma, O., and Proskin, H.. 1990. Cementum thickness and mesial drift. Journal of Clinical Periodontology 17(10): 709–13.Google Scholar
d’Incau, E. 2012. Hypercementosis: Definition, classification and frequency. Application of these results to the Neanderthal line. PhD dissertation, University of Bordeaux, Talence. [In French.]Google Scholar
d’Incau, E., Couture, C., and Maureille, B.. 2012. Human tooth wear in the past and the present: Tribological mechanisms, scoring systems, dental and skeletal compensations. Archives of Oral Biology 57(3): 214–29.CrossRefGoogle ScholarPubMed
d’Incau, E., Rouas, P., and Couture-Veschambre, C.. 2015. Tooth wear and compensatory modification of the dentoalveolar complex in a Nubian sample. Journal of Craniomandibular Function 7(4): 315–36.Google Scholar
d’Incau, E., Couture, C., Crépeau, N., Chenal, F., Beauval, C., Vanderstraete, V., and Maureille, B.. 2015. Determination and validation of criteria to define hypercementosis in two medieval samples from France (Sains-en-Gohelle, AD 7th-17th; Jau-Dignac-et-Loirac, AD 7th-8th century). Archives of Oral Biology 60(2): 293303.Google Scholar
Eberhard, J., and Plagmann, H.-C.. 1999. Changes in the periodontal membrane due to apical periodontitis. Journal of Endodontics 25(7): 486–9.CrossRefGoogle ScholarPubMed
Fox, L. 1933. Paget’s disease (osteitis deformans) and its effect on maxillary bones and teeth. The Journal of the American Dental Association 20(10): 1823–29.Google Scholar
Fujita, T., Montet, X., Tanne, K., and Kiliaridis, S.. 2009. Supraposition of unopposed molars in young and adult rats. Archives of Oral Biology 54(1): 40–4.CrossRefGoogle ScholarPubMed
Gardner, B. S., and Goldstein, H.. 1931. The significance of hypercementosis. The Dental Cosmos 73(11): 1065–69.Google Scholar
Geppert, E.-G., and Müller, K.-H.. 1951. Die wurzelzementapposition als meßbarer ausdruck der kaudruckbelastung des zahnes. Deutsche Zahn-, Mund-, und Kieferheilkunde mit Zentralblatt für die Gesamte, 15 (1–2/3–4): 3048, 97119.Google Scholar
Hanihara, T., Ishida, H., Ohshima, N., Kondo, O., and Masuda, T.. 1994. Dental calculus and other dental disease in a human skeleton of the Okhotsk Culture unearthed at Hamanaka-2 site, Rebun Island, Hokkaido, Japan. International Journal of Osteoarchaeology 4(4): 343–51.CrossRefGoogle Scholar
Henry, J. L., and Weinmann, J. P.. 1951. The pattern of resorption and repair of human cementum. The Journal of the American Dental Association 42(3): 270–90.Google Scholar
Holliday, S., Schneider, B., Galang, M.T. S., Fukui, T., Yamane, A., Luan, X., and Diekwisch, T. G. H.. 2005. Bones, teeth, and genes: A genomic hommage to Harry Sicher’s “axial movement of teeth.World Journal of Orthodontics 6(1): 6170.Google Scholar
Humerfelt, A., and Reitan, K.. 1966. Effects of hypercementosis on the movability of teeth during orthodontic treatment. The Angle Orthodontist 36(3): 179–89.Google ScholarPubMed
Hunter, J. 1778. The Natural History of the Human Teeth: Explaining Their Structure, Use, Formation, Growth, and Diseases. 2nd ed. London: J. Johnson.Google Scholar
Israel, H. 1984. Early hypercementosis and arrested dental eruption: Heritable multiple ankylodontia. Journal of Craniofacial Genetics and Developmental Biology 4(3): 243–46.Google Scholar
Jones, S. J., and Boyde, A.. 1972. A study of human root cementum surfaces as prepared for and examined in the scanning electron microscope. Zeitschrift für Zellforschung und Mikroskopische Anatomie 130(3): 318–37.Google Scholar
Kaifu, Y., Kasai, K., Townsend, G. C., and Richards, L. C.. 2003. Tooth wear and the “design” of the human dentition: A perspective from evolutionary medicine. American Journal of Physical Anthropology 122(Suppl. 37): 4761.CrossRefGoogle Scholar
Kashyap, R. R., Babu, G. S., and Shetty, S. R.. 2011. Dental patient with acromegaly: A case report. Journal of Oral Science 53(1): 133–36.Google Scholar
Kato, S., Nakagaki, H., Kunisaki, H., Sugihara, N., Noguchi, T., Ito, F., Yoshioka, I., Weatherell, J. A., and Robinson, C.. 1992. The thickness of the sound and periodontally diseased human cementum. Archives of Oral Biology 37(8): 675–76.Google Scholar
Kellner, E. 1931. Das verhältnis der zement-und periodontalbreiten zur funktionellen beanspruchung der zähne. Zeitschrift für Stomatologie 29: 4462.Google Scholar
Kim, S. H., Hwang, E. H., and Lee, S. R.. 1991. A radiographic study of hypercementosis. Korean Journal of Oral and Maxillofacial Radiology 21(2): 249–59. [In Korean.]Google Scholar
Kronfeld, R. 1938. The biology of cementum. The Journal of the American Dental Association 25(9): 1451–61.Google Scholar
Künzler, A., and Farmand, M.. 1991. Typical changes in the viscerocranium in acromegaly. Journal of Cranio-Maxillo facial Surgery 19(8): 332–40.Google Scholar
Kupfer, C. 1954. Relationship of hypercementosis to the exophtalmos of hyperthyroidism. AMA Archives of Ophthalmology 52(6): 942–5.Google Scholar
Kupfer, I. J. 1951. Correlation of hypercementosis with toxic goiter; a preliminary report. Journal of Dental Research 30(5): 734–6.CrossRefGoogle ScholarPubMed
Lacy, S. A., Xiu-Jie, Wu, Jin, C.-Z., Qin, D.-G., Cai, Y.-J, and Trinkaus, E.. 2012. Dentolveolar paleopathology of the early modern humans from Zhirendong, South China. International Journal of Paleopathology 2(1): 1018.CrossRefGoogle Scholar
Leider, A. S., and Garbarino, V. E.. 1987. Generalized hypercementosis. Oral Surgery, Oral Medicine, Oral Pathology 63(3): 375–80.Google Scholar
Lindskog-Stokland, B., Hansen, K., Tomasi, C., Hakeberg, M., and Wennström, J. L.. 2012. Changes in molar position associated with missing opposed and/or adjacent tooth: A 12-year study in women. Journal of Oral Rehabilitation 39(2): 136–43.Google Scholar
Malueg, L.A., Wilcox, L. R., and Johnson, W.. 1996. Examination of external apical root resorption with scanning electron microscopy. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics 82(1): 8993.Google Scholar
Moskow, B. S. 1971. Origin, histogenesis and fate of calcified bodies in the periodontal ligament. Journal of Periodontology 42(3): 131–43.Google Scholar
Moxham, B. J., and Berkovitz, B. K. B.. 1995. The periodontal ligament and physiological tooth movements. In The Periodontal Ligament in Health and Disease. 2nd ed. B. K. B. Berkovitz, B. Moxham, J., and Newman, H. N., eds. Barcelona: Mosby-Wolfe, 183214.Google Scholar
Müller, G., and Zander, H. A.. 1960. Cementum of periodontally diseased teeth from India. Journal of Dental Research 39(2): 385–90.Google Scholar
Murphy, T. 1959. Compensatory mechanisms in facial height adjustment to functional tooth attrition. Australian Dental Journal 4(5): 312–23.Google Scholar
Pinheiro, B. C., Pinheiro, T. N., Capelozza, A. L., and Consolaro, A.. 2008. A scanning electron microscopic study of hypercementosis. Journal of Applied Oral Science 16(6): 380–84.Google Scholar
Polson, A., Caton, J., Polson, A. P., Nyman, S., Novak, J., and Reed, B.. 1984. Periodontal response after tooth movement into intrabony defects. Journal of Periodontology 55(4): 197202.Google Scholar
Prabhakar, A. R., Reddy, V. V., and Bassappa, N.. 1998. Duplication and dilaceration of a crown with hypercementosis of the root following trauma: A case report. Quintessence International 29(10): 655–7.Google Scholar
Saffar, J.-L., Lasfargues, J.-J., and Cherruau, M.. 1997. Alveolar bone and the alveolar process: The socket that is never stable. Periodontology 2000 13: 7690.Google Scholar
Schehl, S. 1966. Röntgenologisch-statistische untersuchungen über hyperzementosen. Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald 15: 279–83.Google Scholar
Schroeder, H. E. 1986. The Periodontium. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schroeder, H. E. 1993. Human cellular mixed stratified cementum: A tissue with alternating layers of acellular extrinsic and cellular intrinsic fiber cementum. Schweizerische Monatsschrift für Zahnmedizin 103(5): 550–60.Google ScholarPubMed
Schüpbach, P., Guggenheim, B., and Lutz, F.. 1989. Human root caries: Histology of initial lesions in cementum and dentin. Journal of Oral Pathology & Medicine 18(3): 146–56.Google Scholar
Seed, R., and Nixon, P. P.. 2004. Generalised hypercementosis: A case report. Primary Dental Care 11(4): 119–22.Google Scholar
Selmer-Olsen, R. 1937. The normal movement of the mandibular teeth and the crowding of the incisors as a result of growth and function. The Dental Records 57(9): 465–77.Google Scholar
Sharma, C. G. D., and Pradeep, A. R.. 2007. Localized attachment loss in Pendred syndrome: Incidental? Journal of Periodontology 78(5): 948–54.Google Scholar
Shmamine, T. 1910. Das sekundäre Zement: (Cementhyperplasie, Cementhypertrophie, Hypercementitis USW). Deutsche Zahnheilkunde in Vorträgen, Heft 13. Leipzig: Thieme.Google Scholar
Siatkowski, R. E. 1974. Incisor uprighting: Mechanism for late secondary crowding in the anterior segments of the dental arches. American Journal of Orthodontics 66(4): 398410.Google Scholar
Sicher, H., and Bhaskar, S. N.. 1972. Orban’s Oral Histology and Embryology. 7th ed. St Louis: Mosby.Google Scholar
Smid, J. R., Rowland, J. E., Young, W. G., Daley, T. J., Coschigano, K. T., Kopchick, J. J., and Waters, M. J.. 2004. Mouse cellular cementum is highly dependent on growth hormone status. Journal of Dental Research 83(1): 35–9.Google Scholar
Solheim, T. 1990. Dental cementum apposition as an indicator of age. Scandinavian Journal of Dental Research 98(6): 510–19.Google ScholarPubMed
Sponholz, von H., Kühne, W., and Hämmerling, H.-U.. 1986. Anatomisch-histologische untersuchungen zur zementapposition unter besonderer berücksichtigung funktioneller reize. Zahn-Mund und Kieferheilkunde mit Zentralblatt 74(6): 563–6.Google Scholar
Sreeja, R., Minal, C., Madhuri, T., Swati, P., and Vijay, W.. 2009. A scanning electron microscopic study of the patterns of external root resorption under different conditions. Journal of Applied Oral Science 17(5): 481–6.Google Scholar
Štamfelj, I., Vidmar, G., Cvetko, E., and Gašperšič, D.. 2008. Cementum thickness in multirooted human molars: A histometric study by light microscopy. Annals of Anatomy 190(2): 129–39.Google Scholar
Suter, V. G. A., Reichart, P. A., Bosshardt, D. D., and Bornstein, M. M.. 2011. A typical hard tissue formation around multiple teeth. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 111(2): 138–45.Google Scholar
Villmoare, B., Kuykendall, K., Rae, T. C., and Brimacombe, C. S.. 2013. Continuous dental eruption identifies Sts 5 as the developmentally oldest fossil hominin and informs the taxonomy of Australopithecus africanus. Journal of Human Evolution 65(6): 798805.Google Scholar
Whittaker, D. K., Griffiths, S., Robson, A., Roger-Davies, P., Thomas, G., and Molleson, T.. 1990. Continuing tooth eruption and alveolar crest height in an eighteenth-century population from Spitalfields, East London. Archives of Oral Biology 35(2): 81–5.Google Scholar
Zander, H. A., and Hürzeler, B.. 1958. Continuous cementum apposition. Journal of Dental Research 37(6): 1035–44.Google Scholar
Zhou, J., Zhao, Y. F., Xia, C. Y., and Jiang, L.. 2012. Periodontitis with hypercementosis: Report of a case and discussion of possible aetiologic factors. Australian Dental Journal 57(4): 511–14.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×