Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T08:17:52.151Z Has data issue: false hasContentIssue false

9 - Fracture toughness of ice

Published online by Cambridge University Press:  01 February 2010

Erland M. Schulson
Affiliation:
Dartmouth College, New Hampshire
Paul Duval
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

We turn now from lower-rate to higher-rate deformation and thus from creep to fracture. Accordingly, we focus on cracks. They are ubiquitous within natural features, such as the ice cover on the Arctic Ocean (http://psc.apl.washington.edu/Harry/Radarsat/images.html) and the icy crust of Europa (http://solarsystem.nasa.gov/galileo/gallery/europa.cfm), and play a major role in evolution of the bodies. Our interest is in their behavior, particularly in their resistance to propagation. This is expressed in terms of fracture toughness, a property that is fundamental not only to the scenes noted above but also to the calving of icebergs (Nye, 1957; Vaughan and Doake, 1996), to ice forces on engineered structures (Chapter 14) and to the ductile-to-brittle transition (Chapter 13). Fracture toughness is fundamental also to tensile (Chapter 9) and compressive (Chapters 11, 12) failure.

Our objectives in this chapter are to review briefly the principles underlying fracture mechanics, and then to discuss methods of measuring the fracture toughness of ice and factors that affect the property. For comparison, we include a short discussion of lightly consolidated snow.

Principles of fracture mechanics

The energy dissipated during fast crack propagation through ice is governed to a large degree by the energy required to create new surface. Hence, we base our discussion upon the theory of linear-elastic-fracture mechanics (LEFM). More complete treatments of fracture mechanics may be found in books by Knott (1973), Broek (1982), Atkinson (1989), Lawn (1995) and Anderson (1995).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. L. (1995). Fracture Mechanics: Fundamentals and Applications, 2nd edn. Boca Raton: CRC Press.Google Scholar
Andrews, R. M. (1985). Measurement of the fracture toughness of glacier ice. J. Glaciol., 31, 171–176.CrossRefGoogle Scholar
Ashby, M. F. (1989). Materials selection in conceptual design. Mater. Sci. Technol., 5, 517–525.CrossRefGoogle Scholar
Ashby, M. F. and Hallam, S. D. (1986). The failure of brittle solids containing small cracks under compressive stress states. Acta. Metall., 34, 497–510.CrossRefGoogle Scholar
Atkinson, B. K., Ed. (1989). Fracture Mechanics of Rock. London: Academic Press.
Bentley, D. L., Dempsey, J. P. and Sodhi, D. S. (1989). Fracture toughness of columnar freshwater ice from large scale dcb tests. Cold Reg. Sci. Technol., 17, 7–20.CrossRefGoogle Scholar
Broek, D. (1982). Elementary Engineering Fracture Mechanics, 4th edn. Boston: Springer.CrossRefGoogle Scholar
Brown, W. F. and Srawley, J. E. (1966). Plane strain crack toughness testing of high strength metallic materials. STP 410, ASTM.CrossRef
Butkovich, T. R. (1954). Ultimate strength of ice. U.S. Snow, Ice and Permafrost Research Establishment, Research Paper, 15.
Cole, D. M. (1998). Modeling the cyclic loading response of sea ice. Int. J. Sol. Struct., 35, 4067–4075.CrossRefGoogle Scholar
Chapelle, S., Duval, P. and Baudelet, B. (1995). Compressive creep of polycrystalline ice containing a liquid phase. Scr. Metall. Mater., 33, 447–450.CrossRefGoogle Scholar
Dempsey, J. P. (1991). Fracture toughness of ice. In Ice Structure Interactions, ed. Jones, S. J.. Berlin: Springer-Verlag, pp. 109–125.CrossRefGoogle Scholar
Dempsey, J. P., Adamson, R. M. and Mulmule, S. V. (1999a). Scale effects on the in-situ tensile strength and fracture of ice. Part I: Large grained freshwater ice at Spray Lakes Reservoir, Alberta. Int. J. Fract., 95, 325–345.CrossRefGoogle Scholar
Dempsey, J. P., DeFranco, S. J., Adamson, R. M. and Mulmule, S. V. (1999b). Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T. Int. J. Fract., 95, 347–366.CrossRefGoogle Scholar
Elvin, A. A. (1996). Number of grains required to homogenize elastic properties of polycrystalline ice. Mech. Mater., 22, 51–64.CrossRefGoogle Scholar
Faillettaz, J., Daudon, D., Bonjean, D. and Louchet, F. (2002). Snow toughness measurements and possible applications to avalanche triggering. International Snow Science Workshop 2002, Penticton, B.C., Canada.Google Scholar
Fischer, M. P., Alley, R. B. and Engelder, T. (1995). Fracture toughness of ice and firn determined from the modified ring test. J. Glaciol., 41, 383–394.CrossRefGoogle Scholar
Gibson, L. G. and Ashby, M. F. (1997). Cellular Solids, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gold, L. W. (1963). Deformation mechanisms of ice. In Ice and Snow, ed. Kingery, W. D.. Cambridge, Mass.: MIT Press, pp. 8–27.Google Scholar
Gold, L. W. (1990). The Canadian Habbakuk Project. International Glaciological Society.Google Scholar
Goodman, D. J. (1980). Critical stress intensity factor (KIC) measurements at high loading rates for polycrystalline ice. In Physics and Mechanics of Ice, ed. Tryde, P.. IUTAM Symposium, Copenhagen. Berlin: Springer-Verlag, pp. 129–146.CrossRefGoogle Scholar
Goodman, D. J. and Tabor, D. (1978). Fracture toughness of ice: A preliminary account of some new experiments. J. Glaciol., 21, 651–660.CrossRefGoogle Scholar
Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A, 221, 163–198.CrossRefGoogle Scholar
Griffith, A. A. (1924). The theory of rupture. In Proc. First Internat. Congr. Appl. Mech., eds. Biezeno, C. B. and Burgers, J. M.. Delft: J. Waltman Jr., 55–63.Google Scholar
Inglis, C. E. (1913). Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Naval Architects, 55, 219–230.Google Scholar
Jones, S. J. and Chew, H. A. M. (1981). On the grain-size dependence of secondary creep. J. Glaciol., 27, 517–518.CrossRefGoogle Scholar
Kirchner, H. O. K., Michot, G. and Schweizer, J. (2000). Fracture toughness of snow in tension. Phil. Mag. A, 80, 1265–1272.CrossRefGoogle Scholar
Kirchner, H. O. K., Michot, G., Narita, N. and Suzuki, T. (2001). Snow as a foam of ice: plasticity, fracture and the brittle-to-ductile transition. Phil. Mag. A, 81, 2161–2181.CrossRefGoogle Scholar
Kirchner, H. O. K., Michot, G. and Schweizer, J. (2002a). Fracture toughness of snow in shear under friction. Phys. Rev., 66, 027103.Google ScholarPubMed
Kirchner, H. O. K., Michot, G. and Schweizer, J. (2002b). Fracture toughness of snow in shear and tension. Scr. Mater., 46, 425–429.CrossRefGoogle Scholar
Knott, J. F. (1973). Fundamentals of Fracture Mechanics. New York: John Wiley and Sons.Google Scholar
Lawn, B. (1995). Fracture of Brittle Solids, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
LeClair, E. S., Adamson, R. M. and Dempsey, J. P. (1997). Core-based fracture of aligned first-year sea ice (Phase I). J. Cold Reg. Eng., ASCE, 11, 45–58.CrossRefGoogle Scholar
Liu, H. W. and Miller, K. J. (1979). Fracture toughness of fresh-water ice. J. Glaciol., 22, 135–143.CrossRefGoogle Scholar
McClung, D. M. (1981). Fracture mechanical models of dry slab avalanche release. J. Geophys. Res., 86, 783–790.CrossRefGoogle Scholar
Nixon, W. A. (1988). The effect of notch depth on the fracture toughness of freshwater ice. Cold Reg. Sci. Technol., 15, 75–78.CrossRefGoogle Scholar
Nixon, W. A. and Schulson, E. M. (1987). A micromechanical view of the fracture toughness of ice. J. Physique, 48, 313–319.Google Scholar
Nixon, W. A. and Schulson, E. M. (1988). Fracture toughness of ice over a range of grain sizes. J. Offshore Mech. Arctic Eng., 110, 192–196.CrossRefGoogle Scholar
Nixon, W. A. and Smith, R. A. (1987). The fracture toughness of some wood-ice compositesCold Reg. Sci. Technol., 14, 139–145.CrossRefGoogle Scholar
Nye, J. F. (1957). The distribution of stress and velocity in glaciers and icesheets. Proc. R. Soc. Lond., Ser. A, 239, 113–133.CrossRefGoogle Scholar
Obreimoff, J. W. (1930). The splitting strength of mica. Proc. R. Soc. A, 127, 290–297.CrossRefGoogle Scholar
Paris, P. C. and Sih, G. C. (1965). Stress analysis of cracks. In Symposium on Fracture Toughness Testing: ASTM 381, 30–77.Google Scholar
Perutz, M. F. (1948). Description of the iceberg aircraft carrier and the bearing of the mechnical properties of frozen wood pulp upon some problems of glacier flow. J. Glaciol., 1, 95–104.CrossRefGoogle Scholar
Petrenko, V. F. and Gluschenkov, O. (1996). Crack velocities in freshwater and saline ice. J. Geophys. Res., 101, 11,541–11,551.CrossRefGoogle Scholar
Rice, R. W. (2000). Mechanical Properties of Ceramics and Composites: Grain and Particle Effects. New York: CRC.CrossRefGoogle Scholar
Riedel, H. and Rice, J. R. (1980). Tensile cracks in creeping solids. ASTM-STP, 7700, 112–130.Google Scholar
Rist, M. A., Sammonds, P. R., Murrell, S. A. F.et al. (1996). Experimental fracture and mechanical properties of Antarctic ice: preliminary results. Ann. Glaciol., 23, 284–292.CrossRefGoogle Scholar
Rist, M. A., Sammonds, P. R., Murrell, S. A. F.et al. (1999). Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing. J. Geophys.Res., 104, 2973–2987.CrossRefGoogle Scholar
Rist, M. A., Sammonds, P., Oerter, H. and Doake, C. S. M. (2002). Fracture of Antarctic shelf ice. J. Geophy. Res. Solid Earth, 107 (B1), 2002, doi:10.1029/2000JB000058.CrossRefGoogle Scholar
Sabol, S. A. and Schulson, E. M. (1989). The fracture toughness of ice in contact with salt water. J. Glaciol., 35, 191–192.CrossRefGoogle Scholar
Sammonds, P. R., Murrell, S. A. F. and Rist, M. A. (1998). Fracture of multi-year sea ice. J. Geophys. Res., 103, 21,795–21,815.CrossRefGoogle Scholar
Schweizer, J., Michot, G. and Kirchner, H. O. K. (2004). On the fracture toughness of snow. Ann. Glaciol., 38, 1–8.CrossRefGoogle Scholar
Smith, T. R., Schulson, M. E. and Schulson, E. M. (1990). The fracture toughness of porous ice with and without particles. 9th International Conference on Offshore Mechanics and Arctic Engineering.
Stehn, L. M., DeFranco, S. J. and Dempsey, J. P. (1994). Fracture resistance determination of freshwater ice using a chevron notched tension specimen. Int. J. Fract., 65, 313–328.CrossRefGoogle Scholar
Tada, H. (1973). The Stress Analysis of Cracks Handbook. Hellertown, Pa.: Del Research Corporation.Google Scholar
Timco, G. W. and Frederking, R. M. W. (1982). Flexural strength and fracture toughness of sea ice. Cold Reg. Sci. Technol., 8, 35–41.CrossRefGoogle Scholar
Timco, G. W. and Frederking, R. M. W. (1986). The effects of anisotropy and microcracks on the fracture toughness of freshwater ice. Proceedings of Fifth International Offshore Mechanics and Arctic Engineering (OMAE) Symposium, Tokyo. Vol. 4, eds. Lunardini, V. J., Wang, Y. S., Ayorinde, O. A. and Sodhi, D. V.. New York: American Society of Mechanical Engineers, pp. 341–348.Google Scholar
Urabe, N. and Yoshitake, A. (1981). Strain rate dependent fracture toughness (KIc) of pure ice and sea ice. IAHR Ice Symposium, 410–420.Google Scholar
Urabe, N., Iwasaki, T. and Yoshitake, A. (1980). Fracture toughness of sea ice. Cold Reg. Sci. Technol., 3, 29–37.CrossRefGoogle Scholar
Vaughan, D. G. and Doake, C. S. M. (1996). Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula, Nature, 379, 328–331.CrossRefGoogle Scholar
Weber, L. J. and Nixon, W. A. (1996a). Fracture toughness of freshwater ice – Part I: Experimental technique and results. J. Offshore Mech. Arctic Eng., 118, 135–140.CrossRefGoogle Scholar
Weber, L. J. and Nixon, W. A. (1996b). Fracture toughness of freshwater ice – Part II: Analysis and micrography. J. Offshore Mech. Arctic Eng., 118, 141–147.CrossRefGoogle Scholar
Weeks, W. F. and Assur, A. (1972). Fracture of lake and sea ice. In Fracture, ed. Leibowitz, H.. New York: Academic Press, pp. 879–978.Google Scholar
Wei, Y., DeFranco, S. J. and Dempsey, J. P. (1991). Crack-fabrication techniques and their effects on the fracture toughness and CTOD for fresh-water columnar ice. J. Glaciol., 37, 270–280.CrossRefGoogle Scholar
Williams, F. M., Kirby, C. and Slade, T. (1993). Strength and Fracture Toughness of First-year Arctic Sea Ice. Report No. Tr-1993–12. Institute For Marine Dynamics, NRC-Canada, St. John's, Nfld.
Xu, X., Jeronimidia, G., Atkins, A. G. and Trusty, P. A. (2004). Rate-dependent fracture toughness of pure polycrystalline ice. J. Mater. Sci., 39, 225–233.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fracture toughness of ice
  • Erland M. Schulson, Dartmouth College, New Hampshire, Paul Duval, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Creep and Fracture of Ice
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581397.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fracture toughness of ice
  • Erland M. Schulson, Dartmouth College, New Hampshire, Paul Duval, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Creep and Fracture of Ice
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581397.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fracture toughness of ice
  • Erland M. Schulson, Dartmouth College, New Hampshire, Paul Duval, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Creep and Fracture of Ice
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581397.010
Available formats
×