Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: February 2010

9 - Fracture toughness of ice

Summary

Introduction

We turn now from lower-rate to higher-rate deformation and thus from creep to fracture. Accordingly, we focus on cracks. They are ubiquitous within natural features, such as the ice cover on the Arctic Ocean (http://psc.apl.washington.edu/Harry/Radarsat/images.html) and the icy crust of Europa (http://solarsystem.nasa.gov/galileo/gallery/europa.cfm), and play a major role in evolution of the bodies. Our interest is in their behavior, particularly in their resistance to propagation. This is expressed in terms of fracture toughness, a property that is fundamental not only to the scenes noted above but also to the calving of icebergs (Nye, 1957; Vaughan and Doake, 1996), to ice forces on engineered structures (Chapter 14) and to the ductile-to-brittle transition (Chapter 13). Fracture toughness is fundamental also to tensile (Chapter 9) and compressive (Chapters 11, 12) failure.

Our objectives in this chapter are to review briefly the principles underlying fracture mechanics, and then to discuss methods of measuring the fracture toughness of ice and factors that affect the property. For comparison, we include a short discussion of lightly consolidated snow.

Principles of fracture mechanics

The energy dissipated during fast crack propagation through ice is governed to a large degree by the energy required to create new surface. Hence, we base our discussion upon the theory of linear-elastic-fracture mechanics (LEFM). More complete treatments of fracture mechanics may be found in books by Knott (1973), Broek (1982), Atkinson (1989), Lawn (1995) and Anderson (1995).

Related content

Powered by UNSILO
References
Anderson, T. L. (1995). Fracture Mechanics: Fundamentals and Applications, 2nd edn. Boca Raton: CRC Press.
Andrews, R. M. (1985). Measurement of the fracture toughness of glacier ice. J. Glaciol., 31, 171–176.
Ashby, M. F. (1989). Materials selection in conceptual design. Mater. Sci. Technol., 5, 517–525.
Ashby, M. F. and Hallam, S. D. (1986). The failure of brittle solids containing small cracks under compressive stress states. Acta. Metall., 34, 497–510.
Atkinson, B. K., Ed. (1989). Fracture Mechanics of Rock. London: Academic Press.
Bentley, D. L., Dempsey, J. P. and Sodhi, D. S. (1989). Fracture toughness of columnar freshwater ice from large scale dcb tests. Cold Reg. Sci. Technol., 17, 7–20.
Broek, D. (1982). Elementary Engineering Fracture Mechanics, 4th edn. Boston: Springer.
Brown, W. F. and Srawley, J. E. (1966). Plane strain crack toughness testing of high strength metallic materials. STP 410, ASTM.
Butkovich, T. R. (1954). Ultimate strength of ice. U.S. Snow, Ice and Permafrost Research Establishment, Research Paper, 15.
Cole, D. M. (1998). Modeling the cyclic loading response of sea ice. Int. J. Sol. Struct., 35, 4067–4075.
Chapelle, S., Duval, P. and Baudelet, B. (1995). Compressive creep of polycrystalline ice containing a liquid phase. Scr. Metall. Mater., 33, 447–450.
Dempsey, J. P. (1991). Fracture toughness of ice. In Ice Structure Interactions, ed. Jones, S. J.. Berlin: Springer-Verlag, pp. 109–125.
Dempsey, J. P., Adamson, R. M. and Mulmule, S. V. (1999a). Scale effects on the in-situ tensile strength and fracture of ice. Part I: Large grained freshwater ice at Spray Lakes Reservoir, Alberta. Int. J. Fract., 95, 325–345.
Dempsey, J. P., DeFranco, S. J., Adamson, R. M. and Mulmule, S. V. (1999b). Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T. Int. J. Fract., 95, 347–366.
Elvin, A. A. (1996). Number of grains required to homogenize elastic properties of polycrystalline ice. Mech. Mater., 22, 51–64.
Faillettaz, J., Daudon, D., Bonjean, D. and Louchet, F. (2002). Snow toughness measurements and possible applications to avalanche triggering. International Snow Science Workshop 2002, Penticton, B.C., Canada.
Fischer, M. P., Alley, R. B. and Engelder, T. (1995). Fracture toughness of ice and firn determined from the modified ring test. J. Glaciol., 41, 383–394.
Gibson, L. G. and Ashby, M. F. (1997). Cellular Solids, 2nd edn. Cambridge: Cambridge University Press.
Gold, L. W. (1963). Deformation mechanisms of ice. In Ice and Snow, ed. Kingery, W. D.. Cambridge, Mass.: MIT Press, pp. 8–27.
Gold, L. W. (1990). The Canadian Habbakuk Project. International Glaciological Society.
Goodman, D. J. (1980). Critical stress intensity factor (KIC) measurements at high loading rates for polycrystalline ice. In Physics and Mechanics of Ice, ed. Tryde, P.. IUTAM Symposium, Copenhagen. Berlin: Springer-Verlag, pp. 129–146.
Goodman, D. J. and Tabor, D. (1978). Fracture toughness of ice: A preliminary account of some new experiments. J. Glaciol., 21, 651–660.
Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A, 221, 163–198.
Griffith, A. A. (1924). The theory of rupture. In Proc. First Internat. Congr. Appl. Mech., eds. Biezeno, C. B. and Burgers, J. M.. Delft: J. Waltman Jr., 55–63.
Inglis, C. E. (1913). Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Naval Architects, 55, 219–230.
Jones, S. J. and Chew, H. A. M. (1981). On the grain-size dependence of secondary creep. J. Glaciol., 27, 517–518.
Kirchner, H. O. K., Michot, G. and Schweizer, J. (2000). Fracture toughness of snow in tension. Phil. Mag. A, 80, 1265–1272.
Kirchner, H. O. K., Michot, G., Narita, N. and Suzuki, T. (2001). Snow as a foam of ice: plasticity, fracture and the brittle-to-ductile transition. Phil. Mag. A, 81, 2161–2181.
Kirchner, H. O. K., Michot, G. and Schweizer, J. (2002a). Fracture toughness of snow in shear under friction. Phys. Rev., 66, 027103.
Kirchner, H. O. K., Michot, G. and Schweizer, J. (2002b). Fracture toughness of snow in shear and tension. Scr. Mater., 46, 425–429.
Knott, J. F. (1973). Fundamentals of Fracture Mechanics. New York: John Wiley and Sons.
Lawn, B. (1995). Fracture of Brittle Solids, 2nd edn. Cambridge: Cambridge University Press.
LeClair, E. S., Adamson, R. M. and Dempsey, J. P. (1997). Core-based fracture of aligned first-year sea ice (Phase I). J. Cold Reg. Eng., ASCE, 11, 45–58.
Liu, H. W. and Miller, K. J. (1979). Fracture toughness of fresh-water ice. J. Glaciol., 22, 135–143.
McClung, D. M. (1981). Fracture mechanical models of dry slab avalanche release. J. Geophys. Res., 86, 783–790.
Nixon, W. A. (1988). The effect of notch depth on the fracture toughness of freshwater ice. Cold Reg. Sci. Technol., 15, 75–78.
Nixon, W. A. and Schulson, E. M. (1987). A micromechanical view of the fracture toughness of ice. J. Physique, 48, 313–319.
Nixon, W. A. and Schulson, E. M. (1988). Fracture toughness of ice over a range of grain sizes. J. Offshore Mech. Arctic Eng., 110, 192–196.
Nixon, W. A. and Smith, R. A. (1987). The fracture toughness of some wood-ice compositesCold Reg. Sci. Technol., 14, 139–145.
Nye, J. F. (1957). The distribution of stress and velocity in glaciers and icesheets. Proc. R. Soc. Lond., Ser. A, 239, 113–133.
Obreimoff, J. W. (1930). The splitting strength of mica. Proc. R. Soc. A, 127, 290–297.
Paris, P. C. and Sih, G. C. (1965). Stress analysis of cracks. In Symposium on Fracture Toughness Testing: ASTM 381, 30–77.
Perutz, M. F. (1948). Description of the iceberg aircraft carrier and the bearing of the mechnical properties of frozen wood pulp upon some problems of glacier flow. J. Glaciol., 1, 95–104.
Petrenko, V. F. and Gluschenkov, O. (1996). Crack velocities in freshwater and saline ice. J. Geophys. Res., 101, 11,541–11,551.
Rice, R. W. (2000). Mechanical Properties of Ceramics and Composites: Grain and Particle Effects. New York: CRC.
Riedel, H. and Rice, J. R. (1980). Tensile cracks in creeping solids. ASTM-STP, 7700, 112–130.
Rist, M. A., Sammonds, P. R., Murrell, S. A. F.et al. (1996). Experimental fracture and mechanical properties of Antarctic ice: preliminary results. Ann. Glaciol., 23, 284–292.
Rist, M. A., Sammonds, P. R., Murrell, S. A. F.et al. (1999). Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing. J. Geophys.Res., 104, 2973–2987.
Rist, M. A., Sammonds, P., Oerter, H. and Doake, C. S. M. (2002). Fracture of Antarctic shelf ice. J. Geophy. Res. Solid Earth, 107 (B1), 2002, doi:10.1029/2000JB000058.
Sabol, S. A. and Schulson, E. M. (1989). The fracture toughness of ice in contact with salt water. J. Glaciol., 35, 191–192.
Sammonds, P. R., Murrell, S. A. F. and Rist, M. A. (1998). Fracture of multi-year sea ice. J. Geophys. Res., 103, 21,795–21,815.
Schweizer, J., Michot, G. and Kirchner, H. O. K. (2004). On the fracture toughness of snow. Ann. Glaciol., 38, 1–8.
Smith, T. R., Schulson, M. E. and Schulson, E. M. (1990). The fracture toughness of porous ice with and without particles. 9th International Conference on Offshore Mechanics and Arctic Engineering.
Stehn, L. M., DeFranco, S. J. and Dempsey, J. P. (1994). Fracture resistance determination of freshwater ice using a chevron notched tension specimen. Int. J. Fract., 65, 313–328.
Tada, H. (1973). The Stress Analysis of Cracks Handbook. Hellertown, Pa.: Del Research Corporation.
Timco, G. W. and Frederking, R. M. W. (1982). Flexural strength and fracture toughness of sea ice. Cold Reg. Sci. Technol., 8, 35–41.
Timco, G. W. and Frederking, R. M. W. (1986). The effects of anisotropy and microcracks on the fracture toughness of freshwater ice. Proceedings of Fifth International Offshore Mechanics and Arctic Engineering (OMAE) Symposium, Tokyo. Vol. 4, eds. Lunardini, V. J., Wang, Y. S., Ayorinde, O. A. and Sodhi, D. V.. New York: American Society of Mechanical Engineers, pp. 341–348.
Urabe, N. and Yoshitake, A. (1981). Strain rate dependent fracture toughness (KIc) of pure ice and sea ice. IAHR Ice Symposium, 410–420.
Urabe, N., Iwasaki, T. and Yoshitake, A. (1980). Fracture toughness of sea ice. Cold Reg. Sci. Technol., 3, 29–37.
Vaughan, D. G. and Doake, C. S. M. (1996). Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula, Nature, 379, 328–331.
Weber, L. J. and Nixon, W. A. (1996a). Fracture toughness of freshwater ice – Part I: Experimental technique and results. J. Offshore Mech. Arctic Eng., 118, 135–140.
Weber, L. J. and Nixon, W. A. (1996b). Fracture toughness of freshwater ice – Part II: Analysis and micrography. J. Offshore Mech. Arctic Eng., 118, 141–147.
Weeks, W. F. and Assur, A. (1972). Fracture of lake and sea ice. In Fracture, ed. Leibowitz, H.. New York: Academic Press, pp. 879–978.
Wei, Y., DeFranco, S. J. and Dempsey, J. P. (1991). Crack-fabrication techniques and their effects on the fracture toughness and CTOD for fresh-water columnar ice. J. Glaciol., 37, 270–280.
Williams, F. M., Kirby, C. and Slade, T. (1993). Strength and Fracture Toughness of First-year Arctic Sea Ice. Report No. Tr-1993–12. Institute For Marine Dynamics, NRC-Canada, St. John's, Nfld.
Xu, X., Jeronimidia, G., Atkins, A. G. and Trusty, P. A. (2004). Rate-dependent fracture toughness of pure polycrystalline ice. J. Mater. Sci., 39, 225–233.