Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2004
  • Online publication date: August 2009

3 - Spectropolarimetric observations of supernovae

Summary

Abstract

We briefly review the existing database of supernova spectropolarimetry, concentrating on recent data and on results from our group's research. Spectropolarimetry provides the only direct known probe of early-time supernova geometry. To obtain reliable conclusions, however, it is very important to correctly account for interstellar polarization. We find that Type IIn supernovae (SNe IIn) tend to be highly polarized, perhaps in part because of the interaction of the ejecta with an asymmetric circumstellar medium. In contrast, SNe II-P are not polarized much, at least shortly after the explosion. At later times, however, there is evidence for increasing polarization, as one views deeper into the expanding ejecta. Moreover, core-collapse SNe that have lost part (SN IIb) or all (SN Ib) of their hydrogen (or even helium; SN Ic) layers prior to the explosion tend to show substantial polarization; thus, the deeper we probe into core-collapse events, the greater the asphericity. There is now conclusive evidence that at least some SNe Ia are intrinsically polarized, although only by a small amount. Finally, SN spectropolarimetry provides the opportunity to study the fundamental properties of the interstellar dust in external galaxies. For example, we have found evidence for extremely high polarization efficiency for the dust along the line-of-sight to SN 1999gi in NGC 3184.

Introduction

Since extragalactic supernovae (SNe) are spatially unresolvable during the very early phases of their evolution, explosion geometry has been a difficult question to approach observationally.

Related content

Powered by UNSILO
References
Bazan, G., & Arnett, D. 1994, ApJ, 433, 41
Burrows, A. 2000, Nature, 403, 727
Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830
Burrows, A., Young, T., Pinto, P., Eastman, R., & Thompson, T. A. 2000, ApJ, 539, 865
Colgate, S. A., & White, R. H. 1966, ApJ, 143, 626
Eastman, R. G., Schmidt, B. P., & Kirshner, R. P. 1996, ApJ, 466 911
Filippenko, A. V. 1997, ARA&A, 35, 309
Filippenko, A. V. 2003, in From Twilight to Highlight: The Physics of Supernovae, ed. W. Hillebrandt and B. Leibundgut (Berlin: Springer-Verlag), 171
Filippenko, A. V., Chornock, R., Leonard, D. C., Moran, E. C., & Matheson, T. 2002, IAU Circ. 7846
Foley, R. J., et al., 2003, PASP, 115, 1220
Gaensler, B. M. 1998, ApJ, 493, 781
Galama, T. J., et al. 1998, Nature, 395, 670
Gal-Yam, A., Ofek, E. O., & Shemmer, O. 2002, MNRAS, 332, L73
Hjorth, J., et al., 2003, Nature, 423, 847
Höflich, P. 1990, A&A, 229, 191
Höflich, P. 1991, A&A, 246, 481
Höflich, P. 1995, ApJ, 440, 821
Höflich, P., Wheeler, J. C., Hines, D. C., & Trammell, S. R. 1996, ApJ, 459, 307
Howell, D. A., Höflich, P., Wang, L., & Wheeler, J. C. 2001, ApJ, 556, 302
Iwamoto, K., et al. 1998, Nature, 395, 672
Jeffery, D. J. 1991, ApJ, 375, 264
Kasen, D., et al. 2003, ApJ, 593, 788
Kaspi, V. M., & Helfand, D. J. 2002, in ASP Conf. Ser. 271: Neutron Stars in Supernova Remnants, ed. P. O. Slane & B. M. Gaensler (San Francisco:ASP), 3
Kawabata, K. S., et al. 2002, ApJ, 580, L39
Khokhlov, A. M., & Höflich, P. A. 2001, in Explosive Phenomena in Astrophysical Compact Objects, ed. H.-Y. Chang, et al. (NY: AIP), 301
Khokhlov, A. M., et al. 1999, ApJ, 524, L107
Kirshner, R. P., & Kwan, J. 1974, ApJ, 193, 27
Lai, D., & Goldreich, P. 2000, ApJ, 535, 402
Leonard, D. C., Chornock, R., & Filippenko, A. V. 2003a, IAU Circ.8144
Leonard, D. C., & Filippenko, A. V. 2001, PASP, 113, 920
Leonard, D. C., Filippenko, A. V., Ardila, D. R., & Brotherton, M. S. 2001, ApJ, 553, 861
Leonard, D. C., Filippenko, A. V., Barth, A. J., & Matheson, T. 2000a, ApJ, 536, 239
Leonard, D. C., Filippenko, A. V., Chornock, R., & Foley, R. J. 2002a, PASP, 114, 1333
Leonard, D. C., Filippenko, A. V., Chornock, R., & Li, W. 2002b, AJ, 124, 2506
Leonard, D. C., et al. 2002c, PASP, 114, 35
Leonard, D. C., et al. 2002d, AJ, 124, 2490
Leonard, D. C., Filippenko, A. V., & Matheson, T. 2000b, in Cosmic Explosions, ed. S. S. Holt & W. W. Zhang (New York: AIP), 165
Leonard, D. C., Kanbur, S. M., Ngeow, C. C., & Tanvir, N. R. 2003b, ApJ, 594, 247
MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262
Maeda, K., et al. 2002, ApJ, 565, 405
Manchester, R. N. 1987, A&A, 171, 205
Mazzali, P. A., et al. 2002, ApJ, 572, L61
McCall, M. L. 1984, MNRAS, 210, 829
Nakano, S. & Aoki, M. 1997, IAU Circ. 6790
Papaliolios, C., et al. 1989, Nature, 338, 565
Reddy, N. A., Höflich, P. A., & Wheeler, J. C. 1999, BAAS, 194, 8602
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Serkowski, K., Mathewson, D. L., & Ford, V. L. 1975, ApJ, 196, 261
Shapiro, P. R., & Sutherland, P. G. 1982, ApJ, 263, 902
Stanek, K., et al., 2003, ApJ, 591, L17
Stathakis, R. A. & Sadler, E. M. 1991, MNRAS, 250, 786
Sunyaev, R., et al. 1987, Nature, 330, 227
Taylor, J. H., Manchester, R. N., & Lyne, A. G. 1993, ApJS, 88, 529
Trammell, S. R., Hines, D. C., & Wheeler, J. C. 1993, ApJ, 414, L21
Tran, H. D., Filippenko, A. V., Schmidt, G. D., Bjorkman, K. S., Jannuzi, B. T., & Smith, P. S. 1997, PASP, 109, 489
Wang, L., Baade, D., Höflich, P., & Wheeler, J. C. 2003, ApJ, 592, 457
Wang, L., Howell, D. A., Höflich, P., & Wheeler, J. C. 2001, ApJ, 550, 1030
Wang, L., Wheeler, J. C., & Höflich, P. 1997, ApJ, 476, L27
Wheeler, J. C. 2000, in Cosmic Explosions, ed. S. S. Holt & W. W. Zhang (NY: AIP), 445
Wheeler, J. C., Meier, D. L., & Wilson, J. R. 2002, ApJ, 568, 807
Whittet, D. C. B., Martin, P. G., Hough, J. H., Rouse, M. F., Bailey, J. A., & Axon, D. J. 1992, ApJ, 386, 562
Whittet, D. C. B., & Breda, I. G. 1978, A&A, 66, 57
Woosley, S. E., Eastman, R. G., & Schmidt, B. P. 1999, ApJ, 516, 788