Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T14:42:27.581Z Has data issue: false hasContentIssue false

12 - EEGs and ERPs in bipolar disorders

Published online by Cambridge University Press:  05 May 2016

Jair C. Soares
Affiliation:
University of Texas Health Science Center, Houston
Allan H. Young
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
, pp. 130 - 143
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alhaj, H., Wisniewski, G., McAllister-Williams, R.H. The use of the EEG in measuring therapeutic drug action: focus on depression and antidepressants. J Psychopharmacol. 2011;25(9):1175–91.CrossRefGoogle ScholarPubMed
Altshuler, L.L., Devinsky, O., Post, R.M., et al. Depression, anxiety, and temporal lobe epilepsy. Laterality of focus and symptoms. Arch Neurol. 1990;47(3):284–8.CrossRefGoogle ScholarPubMed
Ancy, J., Gangadhar, B.N., Janakiramaiah, N. “Normal” P300 amplitude predicts rapid response to ECT in melancholia. J Affect Disord. 1996;41(3):211–15.CrossRefGoogle ScholarPubMed
Anderer, P., Saletu, B., Pascual-Marqui, R.D. Effect of the 5-HT(1A) partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA). Psychiatry Res. 2000;100(2):8196.CrossRefGoogle Scholar
Andersson, S., Barder, H.E., Hellvin, T., et al. Neuropsychological and electrophysiological indices of neurocognitive dysfunction in bipolar II disorder. Bipolar Disord. 2008;10(8):888–99.CrossRefGoogle ScholarPubMed
Artola, A., Singer, W. Long-term potentiation and NMDA receptors in rat visual cortex. Nature. 1987;330(6149):649–52.CrossRefGoogle ScholarPubMed
Atagun, M.I., Guntekin, B., Ozerdem, A., et al. Decrease of theta response in euthymic bipolar patients during an oddball paradigm. Cogn Neurodyn. 2013;7(3):213–23.CrossRefGoogle ScholarPubMed
Atagun, M.I., Guntekin, B., Masali, B., et al. Decrease of event-related delta oscillations in euthymic patients with bipolar disorder. Psychiatry Res. 2014;223(1):43–8.CrossRefGoogle ScholarPubMed
Bares, M., Brunovsky, M., Novak, T., et al. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur Neuropsychopharmacol. 2010;20(7):459–66.CrossRefGoogle ScholarPubMed
Bares, M., Novak, T., Brunovsky, M., et al. The change of QEEG prefrontal cordance as a response predictor to antidepressive intervention in bipolar depression. A pilot study. J Psychiatr Res. 2012;46(2):219–25.CrossRefGoogle ScholarPubMed
Bartha, L., Marksteiner, J., Bauer, G., et al. Persistent cognitive deficits associated with lithium intoxication: a neuropsychological case description. Cortex. 2002;38(5):743–52.CrossRefGoogle ScholarPubMed
Barttfeld, P., Petroni, A., Baez, S., et al. Functional connectivity and temporal variability of brain connections in adults with attention deficit/hyperactivity disorder and bipolar disorder. Neuropsychobiology. 2014;69(2):6575.CrossRefGoogle ScholarPubMed
Basar, E., Schurmann, M., Sakowitz, O. The selectively distributed theta system: functions. Int J Psychophysiol. 2001;39(2–3):197212.CrossRefGoogle ScholarPubMed
Basar, E., Guntekin, B., Atagun, I., et al. Brain’s alpha activity is highly reduced in euthymic bipolar disorder patients. Cogn Neurodyn. 2012;6(1):1120.CrossRefGoogle ScholarPubMed
Bell, A.J., Cole, A., Eccleston, D., et al. Lithium neurotoxicity at normal therapeutic levels. Br J Psychiatry. 1993;162:689–92.CrossRefGoogle ScholarPubMed
Bestelmeyer, P.E. The visual P3a in schizophrenia and bipolar disorder: effects of target and distractor stimuli on the P300. Psychiatry Res. 2012;197(12):140–4.CrossRefGoogle ScholarPubMed
Bestelmeyer, P.E., Phillips, L.H., Crombie, C., et al. The P300 as a possible endophenotype for schizophrenia and bipolar disorder: Evidence from twin and patient studies. Psychiatry Res. 2009;169(3):212–19.CrossRefGoogle ScholarPubMed
Beyer, J.L., Young, R., Kuchibhatla, M., et al. Hyperintense MRI lesions in bipolar disorder: A meta-analysis and review. Int Rev Psychiatry. 2009;21(4):394409.CrossRefGoogle ScholarPubMed
Bhattacharya, J. Reduced degree of long-range phase synchrony in pathological human brain. Acta Neurobiol Exp. 2001;61(4):309–18.CrossRefGoogle ScholarPubMed
Blackwood, D.H., Sharp, C.W., Walker, M.T., et al. Implications of comorbidity for genetic studies of bipolar disorder: P300 and eye tracking as biological markers for illness. Br J Psychiatry. 1996;168(Suppl. 30):8592.CrossRefGoogle Scholar
Blackwood, D.H., Visscher, P.M., Muir, W.J. Genetic studies of bipolar affective disorder in large families. Br J Psychiatry. 2001;178(Suppl. 41):s134–6.CrossRefGoogle ScholarPubMed
Bruder, G.E., Towey, J.P., Stewart, J.W., et al. Event-related potentials in depression: influence of task, stimulus hemifield and clinical features on P3 latency. Biol Psychiatry. 1991;30(3):233–46.CrossRefGoogle ScholarPubMed
Bruder, G.E., Stewart, J.W., Tenke, C.E, et al. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry. 2001;49(5): 416–25.Google Scholar
Bruder, G.E., Sedoruk, J.P., Stewart, J.W., et al. Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre- and post-treatment findings. Biol Psychiatry. 2008;63(12):1171–7.CrossRefGoogle ScholarPubMed
Carroll, C.A., Kieffaber, P.D., Vohs, J.L., et al. Contributions of spectral frequency analyses to the study of P50 ERP amplitude and suppression in bipolar disorder with or without a history of psychosis. Bipolar Disord. 2008;10(7):776–87.CrossRefGoogle ScholarPubMed
Cavus, I., Reinhart, R.M., Roach, B.J., et al. Impaired visual cortical plasticity in schizophrenia. Biol Psychiatry. 2012;71(6):512–20.CrossRefGoogle ScholarPubMed
Clapp, W.C., Kirk, I.J., Hamm, J.P., et al. Induction of LTP in the human auditory cortex by sensory stimulation. Eur JNeurosci. 2005;22(5):1135–40.Google ScholarPubMed
Clementz, B.A., Sponheim, S.R., Iacono, W.G., et al. Resting EEG in first-episode schizophrenia patients, bipolar psychosis patients, and their first-degree relatives. Psychophysiology. 1994;31(5):486–94.CrossRefGoogle ScholarPubMed
Cole, A.J., Scott, J., Ferrier, I.N., et al. Patterns of treatment resistance in bipolar affective disorder. Acta Psychiatr Scand. 1993;88(2):121–3.CrossRefGoogle ScholarPubMed
Collingridge, G.L., Bliss, T.V.P. NMDA receptors – their role in long-term potentiation. Trends Neurosci. 1987;10:288–93.CrossRefGoogle Scholar
Cook, I.A., Leuchter, A.F., Morgan, M., et al. Early changes in prefrontal activity characterize clinical responders to antidepressants. Neuropsychopharmacology. 2002;27(1):120–31.CrossRefGoogle ScholarPubMed
Craddock, N., O’Donovan, M.C., Owen, M.J. Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull. 2006;32(1):916.CrossRefGoogle ScholarPubMed
Davidson, R. J., Henriques, J. Regional brain function in sadness and depression. In: Borod, J. C. (ed.) The Neuropsychology of Emotion., New York: Oxford University Press; 2000: pp. 269–97.Google Scholar
Debener, S., Strobel, A., Kurschner, K., et al. Is auditory evoked potential augmenting/reducing affected by acute tryptophan depletion? Biol Psychol. 2002;59(2):121–33.CrossRefGoogle ScholarPubMed
Degabriele, R., Lagopoulos, J. Delayed early face processing in bipolar disorder. Neuroreport. 2012;23(3):152–6.CrossRefGoogle ScholarPubMed
Devon, R.S., Anderson, S., Teague, P.W., et al. Identification of polymorphisms within Disrupted in Schizophrenia 1 and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatr Genet. 2001;11(2):71–8.CrossRefGoogle Scholar
Dierks, T., Barta, S., Demisch, L, et al. Intensity dependence of auditory evoked potentials (AEPs) as biological marker for cerebral serotonin levels: effects of tryptophan depletion in healthy subjects. Psychopharmacology. 1999;146(1):101–7.CrossRefGoogle ScholarPubMed
Domjan, N., Csifcsak, G., Drotos, G., et al. Different patterns of auditory information processing deficits in chronic schizophrenia and bipolar disorder with psychotic features. Schizophr Res. 2012;139(13):253–9.CrossRefGoogle ScholarPubMed
Donkers, F.C., Englander, Z.A., Tiesinga, P.H., et al. Reduced delta power and synchrony and increased gamma power during the P3 time window in schizophrenia. Schizophr Res. 2013;150(1):266–8.CrossRefGoogle ScholarPubMed
Eimer, M. The face-specific N170 component reflects late stages in the structural encoding of faces. Neuroreport. 2000;11(10):2319–24.CrossRefGoogle ScholarPubMed
Elvsashagen, T., Moberget, T., Boen, E., et al. Evidence for impaired neocortical synaptic plasticity in bipolar II disorder. Biol Psychiatry. 2012;71(1):6874.CrossRefGoogle ScholarPubMed
Ethridge, L.E., Hamm, J.P., Shapiro, J.R., et al. Neural activations during auditory oddball processing discriminating schizophrenia and psychotic bipolar disorder. Biol Psychiatry. 2012;72(9):766–74.CrossRefGoogle ScholarPubMed
Ethridge, L.E., Hamm, J.P., Pearlson, G.D., et al. Event-related potential and time-frequency endophenotypes for schizophrenia and psychotic bipolar disorder. Biol Psychiatry. 2014;(14):10.Google ScholarPubMed
Ferrier, I.N., Tyrer, S.P., Bell, A.J. Lithium therapy. Adv Psychiatr Treat. 1995;1:102–10.CrossRefGoogle Scholar
Fridberg, D.J., Hetrick, W.P., Brenner, C.A., et al. Relationships between auditory event-related potentials and mood state, medication, and comorbid psychiatric illness in patients with bipolar disorder. Bipolar Disord. 2009;11(8):857–66.CrossRefGoogle ScholarPubMed
Guntekin, B., Saatci, E., Yener, G. Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm. Brain Res. 2008;1235:109–16.CrossRefGoogle ScholarPubMed
Hall, M.H., Rijsdijk, F., Kalidindi, S, et al. Genetic overlap between bipolar illness and event-related potentials. Psychol Med. 2007;37(5):667–78.CrossRefGoogle ScholarPubMed
Hall, M.H., Smoller, J.W., Cook, N.R., et al. Patterns of deficits in brain function in bipolar disorder and schizophrenia: a cluster analytic study. Psychiatry Res. 2012;200(2–3):272–80.CrossRefGoogle ScholarPubMed
Hamm, J.P., Ethridge, L.E., Boutros, N.N., et al. Diagnostic specificity and familiality of early versus late evoked potentials to auditory paired stimuli across the schizophrenia-bipolar psychosis spectrum. Psychophysiology. 2014;51(4):348–57.CrossRefGoogle ScholarPubMed
Harden, C.L. The co-morbidity of depression and epilepsy: epidemiology, etiology, and treatment. Neurology. 2002;59(6 Suppl 4):S48–55.CrossRefGoogle ScholarPubMed
Harden, C.L., Goldstein, M.A. Mood disorders in patients with epilepsy: epidemiology and management. CNS Drugs. 2002;16(5):291302.CrossRefGoogle ScholarPubMed
Hays, P. Etiological factors in manic-depressive psychoses. Arch Gen Psychiatry. 1976;33(10):1187–8.CrossRefGoogle ScholarPubMed
Hegerl, U., Juckel, G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biol Psychiatry. 1993;33(3):173–87.CrossRefGoogle ScholarPubMed
Hegerl, U., Gallinat, J., Juckel, G. Event-related potentials. Do they reflect central serotonergic neurotransmission and do they predict clinical response to serotonin agonists? J Affect Disord. 2001;62(1–2):93100.CrossRefGoogle ScholarPubMed
Hesdorffer, D.C., Hauser, W.A., Annegers, J.F., et al. Major depression is a risk factor for seizures in older adults. Ann Neurol. 2000;47(2):246–9.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Hjorth, S., Auerbach, S.B. Further evidence for the importance of 5-HT1A autoreceptors in the action of selective serotonin reuptake inhibitors. Eur J Pharmacol. 1994;260(2–3):251–5.CrossRefGoogle ScholarPubMed
Hughes, J.R. The EEG in psychiatry: an outline with summarized points and references. Clin Electroencephalogr. 1995;26(2):92101.CrossRefGoogle ScholarPubMed
Ikeda, A., Kato, N., Kato, T. Possible relationship between electroencephalogram finding and lithium response in bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2002;26(5):903–7.CrossRefGoogle ScholarPubMed
Inui, K., Motomura, E., Okushima, R., et al. Electroencephalographic findings in patients with DSM-IV mood disorder, schizophrenia, and other psychotic disorders. Biol Psychiatry. 1998;43(1):6975.CrossRefGoogle ScholarPubMed
Iosifescu, D.V., Greenwald, S., Devlin, P., et al. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur Neuropsychopharmacol. 2009;19(11):772–7.CrossRefGoogle ScholarPubMed
Ising, M., Horstmann, S., Kloiber, S., et al. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression – a potential biomarker? Biol Psychiatry. 2007;62(1):4754.CrossRefGoogle ScholarPubMed
Jahshan, C., Wynn, J.K., Mathis, K.I., et al. Cross-diagnostic comparison of duration mismatch negativity and P3a in bipolar disorder and schizophrenia. Bipolar Disord. 2012;14(3):239–48.CrossRefGoogle ScholarPubMed
Juckel, G., Hegerl, U., Molnar, M., et al. Auditory evoked potentials reflect serotonergic neuronal activity – a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacology. 1999;21(6):710–16.CrossRefGoogle ScholarPubMed
Kam, J.W., Bolbecker, A.R., O’Donnell, B.F., et al. Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia. J Psychiatr Res. 2013;47(12):1893–901.CrossRefGoogle ScholarPubMed
Kaur, M., Battisti, R.A., Ward, P.B., et al. MMN/P3a deficits in first episode psychosis: comparing schizophrenia-spectrum and affective-spectrum subgroups. Schizophr Res. 2011;130(13):203–9.CrossRefGoogle ScholarPubMed
Kaur, M., Lagopoulos, J., Lee, R.S., et al. Longitudinal associations between mismatch negativity and disability in early schizophrenia- and affective-spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:161–9.CrossRefGoogle ScholarPubMed
Khodayari-Rostamabad, A., Reilly, J.P., Hasey, G., et al. Diagnosis of psychiatric disorders using EEG data and employing a statistical decision model. Conf Proc IEEE Eng Med Biol Soc. 2010:4006–9.Google ScholarPubMed
Kim, D.J., Bolbecker, A.R., Howell, J., et al. Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis. Neuroimage Clin. 2013;2:414–23.CrossRefGoogle ScholarPubMed
Knott, V.J., Telner, J.I., Lapierre, Y.D., et al. Quantitative EEG in the prediction of antidepressant response to imipramine. J Affect Disord. 1996;39(3):175–84.CrossRefGoogle ScholarPubMed
Korb, A.S., Hunter, A.M., Cook, I.A., et al. Rostral anterior cingulate cortex theta current density and response to antidepressants nd placebo in major depression. Clin Neurophysiol. 2009;120(7):1313–19.CrossRefGoogle Scholar
Kurt, P., Emek-Savas, D.D., Batum, K., et al. Patients with mild cognitive impairment display reduced auditory event-related delta oscillatory responses. Behav Neurol. 2014;2014:268967.CrossRefGoogle ScholarPubMed
Lee, P.S., Chen, Y.S., Hsieh, J.C., et al. Distinct neuronal oscillatory responses between patients with bipolar and unipolar disorders: a magnetoencephalographic study. J Affect Disord. 2010;123(1–3):270–5.CrossRefGoogle ScholarPubMed
Leuchter, A.F., Cook, I.A., Lufkin, R.B., et al. Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage. 1994;1(3):208–19.CrossRefGoogle ScholarPubMed
Linden, D.E. The p300: where in the brain is it produced and what does it tell us? Neuroscientist. 2005;11(6):563–76.CrossRefGoogle ScholarPubMed
Linka, T., Muller, B.W., Bender, S., et al. The intensity dependence of auditory evoked ERP components predicts responsiveness to reboxetine treatment in major depression. Pharmacopsychiatry. 2005;38(3):139–43.CrossRefGoogle ScholarPubMed
Linka, T., Sartory, G., Bender, S., et al. The intensity dependence of auditory ERP components in unmedicated patients with major depression and healthy controls. An analysis of group differences. J Affect Disord. 2007;103(1–3):139–45.CrossRefGoogle ScholarPubMed
Liu, T.Y., Hsieh, J.C., Chen, Y.S., et al. Different patterns of abnormal gamma oscillatory activity in unipolar and bipolar disorder patients during an implicit emotion task. Neuropsychologia. 2012;50(7):1514–20.CrossRefGoogle ScholarPubMed
Maekawa, T., Katsuki, S., Kishimoto, J., et al. Altered visual information processing systems in bipolar disorder: evidence from visual MMN and P3. Front Hum Neurosci. 2013;7:403.CrossRefGoogle ScholarPubMed
Massey, A.E., Marsh, V.R., McAllister-Williams, R.H. Lack of effect of tryptophan depletion on the loudness dependency of auditory event related potentials in healthy volunteers. Biol Psychology. 2004;65(2):137–45.CrossRefGoogle ScholarPubMed
Matute, C., Ransom, B.R. Roles of white matter in central nervous system pathophysiologies. ASN Neurol. 2012;4(2).Google ScholarPubMed
Mayberg, H.S. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997;9(3):471–81.Google ScholarPubMed
McAllister-Williams, R.H., Massey, A.E. EEG effects of buspirone and pindolol: a method of examining 5-HT(1A) receptor function in humans. Psychopharmacology. 2003;166(3):284–93.CrossRefGoogle ScholarPubMed
McAllister-Williams, R.H., Alhaj, H.A., Massey, A., et al. Somatodendritic 5-hydroxytryptamine1A (5-HT1A) autoreceptor function in major depression as assessed using the shift in electroencephalographic frequency spectrum with buspirone. Psychol Med. 2014;44(4):767–77.CrossRefGoogle ScholarPubMed
Mears, R.P., Spencer, K.M. Electrophysiological assessment of auditory stimulus-specific plasticity in schizophrenia. Biol Psychiatry. 2012;71(6):503–11.CrossRefGoogle ScholarPubMed
Miller, J.M., Oquendo, M.A., Ogden, R.T., et al. Serotonin transporter binding as a possible predictor of one-year remission in major depressive disorder. J Psychiatr Res. 2008;42(14):1137–44.CrossRefGoogle ScholarPubMed
Narayanan, B., O’Neil, K., Berwise, C., et al. Resting state electroencephalogram oscillatory abnormalities in schizophrenia and psychotic bipolar patients and their relatives from the bipolar and schizophrenia network on intermediate phenotypes study. Biol Psychiatry. 2013;(13):10.Google ScholarPubMed
Normann, C., Schmitz, D., Furmaier, A., et al. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry. 2007;62(5):373–80.CrossRefGoogle ScholarPubMed
Nortje, G., Stein, D.J., Radua, J., et al. Systematic review and voxel-based meta-analysis of diffusion tensor imaging studies in bipolar disorder. J Affect Disord. 2013;150(2):192200.CrossRefGoogle ScholarPubMed
Nunez, P.L., Srinivasan, R., Westdorp, A.F, et al. EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol. 1997;103(5):499515.CrossRefGoogle ScholarPubMed
Nyman, G., Alho, K., Laurinen, P., et al. Mismatch negativity (MMN) for sequences of auditory and visual stimuli: evidence for a mechanism specific to the auditory modality. Electroencephalogr Clin Neurophysiol. 1990;77(6):436–44.CrossRefGoogle Scholar
O’Donnell, B.F., Hetrick, W.P., Vohs, J.L., et al. Neural synchronization deficits to auditory stimulation in bipolar disorder. Neuroreport. 2004a;15(8):1369–72.CrossRefGoogle ScholarPubMed
O’Donnell, B.F., Vohs, J.L., Hetrick, W.P., et al. Auditory event-related potential abnormalities in bipolar disorder and schizophrenia. Int J Psychophysiol. 2004b;53(1):4555.CrossRefGoogle ScholarPubMed
Olincy, A. & Martin, L. Diminished suppression of the P50 auditory evoked potential in bipolar disorder subjects with a history of psychosis. Am J Psychiatry. 2005;162(1):43–9.CrossRefGoogle ScholarPubMed
Ozerdem, A., Guntekin, B., Saatci, E., et al. Disturbance in long distance gamma coherence in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):861–5.CrossRefGoogle ScholarPubMed
Ozerdem, A., Guntekin, B., Atagun, I., et al. Reduced long distance gamma (28–48 Hz) coherence in euthymic patients with bipolar disorder. J Affect Disord. 2011;132(3):325–32.CrossRefGoogle ScholarPubMed
Park, Y.M., Lee, S.H., Kim, S., et al. The loudness dependence of the auditory evoked potential (LDAEP) in schizophrenia, bipolar disorder, major depressive disorder, anxiety disorder, and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(2):313–16.CrossRefGoogle ScholarPubMed
Patterson, J.V., Sandman, C.A., Ring, A., et al. An initial report of a new biological marker for bipolar disorder: P85 evoked brain potential. Bipolar Disord. 2009;11(6):596609.CrossRefGoogle ScholarPubMed
Paul, R.H., Clark, C.R., Lawrence, J., et al. Age-dependent change in executive function and gamma 40 Hz phase synchrony. J Integr Neurosci. 2005;4(1):6376.CrossRefGoogle ScholarPubMed
Perlis, R.H. Pharmacogenetic studies of antidepressant response: how far from the clinic? Psychiatr Clin North Am. 2007;30(1):125–38.CrossRefGoogle ScholarPubMed
Phillips, M.A., Oxtoby, E.K., Langley, R.W., et al. Effects of acute tryptophan depletion on prepulse inhibition of the acoustic startle (eyeblink) response and the N1/P2 auditory evoked response in man. J Psychopharmacol. 2000;14(3):258–65.Google ScholarPubMed
Pizzagalli, D.A., Oakes, T.R., & Davidson, R.J. Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects. Psychophysiology. 2003;40(6):939–49.CrossRefGoogle ScholarPubMed
Rass, O., Krishnan, G., Brenner, C.A., et al. Auditory steady state response in bipolar disorder: relation to clinical state, cognitive performance, medication status, and substance disorders. Bipolar Disord. 2010;12(8):793803.CrossRefGoogle ScholarPubMed
Reeves, R.R., Struve, F.A., Patrick, G. Does EEG predict response to valproate versus lithium in patients with mania? Ann Clin Psychiatry. 2001;13(2):6973.CrossRefGoogle ScholarPubMed
Reilly, J.G., McTavish, S.F., Young, A.H. Rapid depletion of plasma tryptophan: a review of studies and experimental methodology. J Psychopharmacol. 1997;11(4):381–92.CrossRefGoogle ScholarPubMed
Rodriguez, E., George, N., Lachaux, J.P., et al. Perception’s shadow: long-distance synchronization of human brain activity. Nature. 1999;397(6718):430–3.CrossRefGoogle ScholarPubMed
Ryu, V., An, S.K., Jo, H.H., et al. Decreased P3 amplitudes elicited by negative facial emotion in manic patients: selective deficits in emotional processing. Neurosci Lett. 2010;481(2):92–6.CrossRefGoogle ScholarPubMed
Schmitz, B. Depression and mania in patients with epilepsy. Epilepsia. 2005;46(Suppl 4):45–9.CrossRefGoogle ScholarPubMed
Schou, M. Long-lasting neurological sequelae after lithium intoxication. Acta Psychiatr Scand. 1984;70(6):594602.CrossRefGoogle ScholarPubMed
Schumann, G., Binder, E.B., Holte, A., et al. Stratified medicine for mental disorders. Eur Neuropsychopharmacol. 2014;24(1):550.CrossRefGoogle ScholarPubMed
Sheean, G.L. Lithium neurotoxicity. Clin Exp Neurol. 1991;28:112–27.Google ScholarPubMed
Small, J.G., Milstein, V., Malloy, F.W., et al. Clinical and quantitative EEG studies of mania. J Affect Disord. 1999;53(3):217–24.CrossRefGoogle ScholarPubMed
Sokhadze, E.M., Tasman, A., Tamas, R., et al. Event-related potential study of the effects of emotional facial expressions on task performance in euthymic bipolar patients. Appl Psychophysiol Biofeedback. 2011;36(1):113.CrossRefGoogle ScholarPubMed
Souza, V.B., Muir, W.J., Walker, M.T., et al. Auditory P300 event-related potentials and neuropsychological performance in schizophrenia and bipolar affective disorder. Biol Psychiatry. 1995;37(5):300–10.CrossRefGoogle ScholarPubMed
Stam, C.J., Montez, T., Jones, B.F., et al. Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin Neurophysiol. 2005;116(3):708–15.CrossRefGoogle ScholarPubMed
Stoll, A.L., Banov, M., Kolbrener, M., et al. Neurologic factors predict a favorable valproate response in bipolar and schizoaffective disorders. J Clin Psychopharmacol. 1994;14(5):311–13.CrossRefGoogle ScholarPubMed
Streit, M., Ioannides, A.A., Liu, L., et al. Neurophysiological correlates of the recognition of facial expressions of emotion as revealed by magnetoencephalography. Brain Res.Cogn Brain Res. 1999;7(4):481–91.CrossRefGoogle ScholarPubMed
Swann, A.C., Lijffijt, M., Lane, S.D., et al. Pre-attentive information processing and impulsivity in bipolar disorder. J Psychiatr Res. 2013;47(12):1917–24.CrossRefGoogle ScholarPubMed
Symond, M.P., Harris, A.W., Gordon, E., et al. “Gamma synchrony” in first-episode schizophrenia: a disorder of temporal connectivity? Am J Psychiatry. 2005;162(3):459–65.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Fischer, C. Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J Neurosci. 2001;21(20):RC177.CrossRefGoogle ScholarPubMed
Teyler, T.J., Cavus, I. Depressed neuroplasticity in major depressive disorder? Biol Psychiatry. 2007;62(5): 371–2.CrossRefGoogle ScholarPubMed
Teyler, T.J., DiScenna, P. Long-term potentiation. Annu Rev Neurosci. 1987;10:131–61.CrossRefGoogle ScholarPubMed
Teyler, T.J., Hamm, J.P., Clapp, W.C., et al. Long-term potentiation of human visual evoked responses. Eur J Neurosci. 2005;21(7):2045–50.CrossRefGoogle ScholarPubMed
Ulrich, G., Renfordt, E., Zeller, G., et al. Interrelation between changes in the EEG and psychopathology under pharmacotherapy for endogenous depression. A contribution to the predictor question. Pharmacopsychiatry. 1984;17(6):178–83.CrossRefGoogle ScholarPubMed
Umbricht, D., Koller, R., Vollenweider, F.X., et al. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychiatry. 2002;51(5):400–6.CrossRefGoogle ScholarPubMed
Umbricht, D., Koller, R., Schmid, L., et al. How specific are deficits in mismatch negativity generation to schizophrenia? Biol Psychiatry. 2003;53(12):1120–31.CrossRefGoogle ScholarPubMed
Velasques, B., Bittencourt, J., Diniz, C et al. Changes in saccadic eye movement (SEM) and quantitative EEG parameter in bipolar patients. J Affect Disord. 2013;145(3):378–85.CrossRefGoogle ScholarPubMed
Vuillier, L., Hermens, D.F., Chitty, K., et al. Emotional processing, P50 sensory gating, and social functioning in bipolar disorder. Clin EEG Neurosci. 2015;46(2):81–7.CrossRefGoogle ScholarPubMed
Wynn, J.K., Jahshan, C., Altshuler, L.L., et al. Event-related potential examination of facial affect processing in bipolar disorder and schizophrenia. Psychol Med. 2013;43(1):109–17.CrossRefGoogle ScholarPubMed
Yeap, S., Kelly, S.P., Reilly, R.B., et al. Visual sensory processing deficits in patients with bipolar disorder revealed through high-density electrical mapping. J Psychiatry Neurosci. 2009;34(6):459–64.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×