We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study systems of $n$ points in the Euclidean space of dimension $d\geqslant 1$ interacting via a Riesz kernel $|x|^{-s}$ and confined by an external potential, in the regime where $d-2\leqslant s<d$. We also treat the case of logarithmic interactions in dimensions 1 and 2. Our study includes and retrieves all cases previously studied in Sandier and Serfaty [2D Coulomb gases and the renormalized energy, Ann. Probab. (to appear); 1D log gases and the renormalized energy: crystallization at vanishing temperature (2013)] and Rougerie and Serfaty [Higher dimensional Coulomb gases and renormalized energy functionals, Comm. Pure Appl. Math. (to appear)]. Our approach is based on the Caffarelli–Silvestre extension formula, which allows one to view the Riesz kernel as the kernel of an (inhomogeneous) local operator in the extended space $\mathbb{R}^{d+1}$.
As $n\rightarrow \infty$, we exhibit a next to leading order term in $n^{1+s/d}$ in the asymptotic expansion of the total energy of the system, where the constant term in factor of $n^{1+s/d}$ depends on the microscopic arrangement of the points and is expressed in terms of a ‘renormalized energy’. This new object is expected to penalize the disorder of an infinite set of points in whole space, and to be minimized by Bravais lattice (or crystalline) configurations. We give applications to the statistical mechanics in the case where temperature is added to the system, and identify an expected ‘crystallization regime’. We also obtain a result of separation of the points for minimizers of the energy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.