Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T15:56:57.731Z Has data issue: false hasContentIssue false

Genomic and transcriptomic evaluations of infertile or subfertile Arunachali yak sperm

Published online by Cambridge University Press:  17 October 2024

Pranab Jyoti Das
Affiliation:
ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India ICAR-National Research Centre on Pig, Guwahati, Assam, India
Aneet Kour
Affiliation:
ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
Jyotika Bhati
Affiliation:
ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
Dwijesh Chandra Mishra
Affiliation:
ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
Mihir Sarkar*
Affiliation:
ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India
*
Corresponding author: Mihir Sarkar; Email: msarkar24@gmail.com

Abstract

Sperm infertility or subfertility is detrimental to the precious highland germplasm like yak whose population has been gradually declining in India. Understanding the ‘omic’ landscape of infertile or subfertile yak sperm can reveal some interesting insights. In an attempt to do the same, this study considered the semen of infertile or subfertile yak bulls for whole-genome and transcriptome evaluations. DNA sequencing revealed that the yak sperm genome contains the necessary genes to carry out all the important biological processes related to the growth, development, survival and multiplication of an organism. Interestingly, RNA Seq results highlighted that genes like VAMP7, MYLK, ARAP2 and MARCH6 showed increased expression, while biological processes related to immune response (GO:0043308, GO:0002447, GO:0002278, GO:0043307, GO:0043312, GO:0002283, GO:0043299 and GO:0002446) were significantly overrepresented. These findings hint at a possible role played by immune system in regulating infertility or subfertility in yaks. Further, in-depth studies can validate these findings and help in improving our biological understanding in this area.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work and share the first authorship

References

Akhigbe, R.E., Dutta, S., Hamed, M.A., Ajayi, A.F., Sengupta, P. and Ahmad, G. (2022) Viral infections and male infertility: a comprehensive review of the role of oxidative stress. Frontiers in Reproductive Health 4, 782915.CrossRefGoogle ScholarPubMed
Alghamdi, A.S. and Foster, D.N. (2005) Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biology of Reproduction 73, 11741181.CrossRefGoogle ScholarPubMed
Amann, R.P. and DeJarnette, J.M. (2012) Impact of genomic selection of AI dairy sires on their likely utilization and methods to estimate fertility: a paradigm shift. Theriogenology 77, 795817.CrossRefGoogle ScholarPubMed
Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. Available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed 9 December 2022).Google Scholar
Archana, S.S., Selvaraju, S., Binsila, B.K., Arangasamy, A. and Krawetz, S.A. (2019) Immune regulatory molecules as modifiers of semen and fertility: a review. Molecular Reproduction and Development 86, 14851504.CrossRefGoogle ScholarPubMed
Bohring, C. and Krause, W. (2003) Immune infertility: towards a better understanding of sperm (auto)-immunity. The value of proteomic analysis. Human Reproduction (Oxford, England) 18, 915924.CrossRefGoogle ScholarPubMed
Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 21142120.CrossRefGoogle ScholarPubMed
Borregaard, N. (2010) Neutrophils, from marrow to microbes. Immunity 33, 657670.CrossRefGoogle ScholarPubMed
Bozhedomov, V.A. and Teodorovich, O.V. (2005) Epidemiology and causes of autoimmune male infertility. Urologiia 3544.Google ScholarPubMed
Brazdova, A., Senechal, H., Peltre, G. and Poncet, P. (2016) Immune aspects of female infertility. International Journal of Fertility & Sterility 10, 1.Google ScholarPubMed
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y. and Zychlinsky, A. (2004) Neutrophil extracellular traps kill bacteria. Science 303, 15321535.CrossRefGoogle ScholarPubMed
Bronson, R.A., O’Connor, W.J., Wilson, T.A., Bronson, S.K., Chasalow, F.I. and Droesch, K. (1992) Correlation between puberty and the development of autoimmunity to spermatozoa in men with cystic fibrosis. Fertility and Sterility 58, 11991204.CrossRefGoogle ScholarPubMed
Bryant, A., Palma, C.A., Jayaswal, V., Yang, Y.W., Lutherborrow, M. and Ma, D.D.F. (2012) miR-10a is aberrantly overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia and its suppression induces cell death. Molecular Cancer 11, 19.CrossRefGoogle ScholarPubMed
Butler, M.L., Bormann, J.M., Weaber, R.L., Grieger, D.M. and Rolf, M.M. (2020) Selection for bull fertility: a review. Translational Animal Science 4, 423.CrossRefGoogle ScholarPubMed
Bystrom, J., Amin, K. and Bishop-Bailey, D. (2011) Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte. Respiratory Research 12, 10.CrossRefGoogle Scholar
Cai, X., Yu, S., Mipam, T.D., Yang, F., Zhao, W., Liu, W., Cao, S.Z., Shen, L., Zhao, F., Sun, L., Xu, C. and Wu, S. (2017) Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Theriogenology 88, 2842.CrossRefGoogle ScholarPubMed
Cassuto, N.G., Piquemal, D., Boitrelle, F., Larue, L., Ledee, N., Hatem, G., Ruoso, L., Bouret, D., Siffroi, J.P., Rouen, A. and Assou, S. (2021) Molecular profiling of spermatozoa reveals correlations between morphology and gene expression: a novel biomarker panel for male infertility. BioMed Research International 2021, 1434546.CrossRefGoogle ScholarPubMed
Cerván-Martín, M., Tüttelmann, F., Lopes, A.M., Bossini-Castillo, L., Rivera-Egea, R., Garrido, N., Lujan, S., Romeu, G., Santos-Ribeiro, S., Castilla, J.A., Carmen Gonzalvo, M., Clavero, A., Maldonado, V., Vicente, F.J., González-Muñoz, S., Guzmán-Jiménez, A., Burgos, M., Jiménez, R., Pacheco, A., González, C., Gómez, S., Amorós, D., Aguilar, J., Quintana, F., Calhaz-Jorge, C., Aguiar, A., Nunes, J., Sousa, S., Pereira, I., Pinto, M.G., Correia, S., Sánchez-Curbelo, J., López-Rodrigo, O., Martín, J., Pereira-Caetano, I., Marques, P.I., Carvalho, F., Barros, A., Gromoll, J., Bassas, L., Seixas, S., Gonçalves, J., Larriba, S., Kliesch, S., Palomino-Morales, R.J. and Carmona, F.D. (2022) Immune and spermatogenesis-related loci are involved in the development of extreme patterns of male infertility. Communications Biology 5, 1220.CrossRefGoogle ScholarPubMed
Cooley, L.F., El Shikh, M.E., Li, W., Keim, R.C., Zhang, Z., Strauss, J.F., Zhang, Z. and Conrad, D.H. (2016) Impaired immunological synapse in sperm associated antigen 6 (SPAG6) deficient mice. Scientific Reports 6, 25840.CrossRefGoogle ScholarPubMed
Darling, A., Carey, L. and Wu, F. (2003) The Design, Implementation, and Evaluation of mpiBLAST. Proc Cluster World. Available at https://pages.cs.wisc.edu/darling/mpiblast-cwce2003.pdf (accessed 2 October 2024).Google Scholar
Das, P.P., Begum, S.S., Choudhury, M., Medhi, D., Paul, V. and Das, P.J. (2020) Characterizing miRNA and mse-tsRNA in fertile and subfertile yak bull spermatozoa from Arunachal Pradesh. Journal of Genetics 99, 19.CrossRefGoogle Scholar
Das, P.J., McCarthy, F., Vishnoi, M., Paria, N., Gresham, C., Li, G., Kachroo, P., Sudderth, A.K., Teague, S., Love, C.C., Varner, D.D., Chowdhary, B.P. and Raudsepp, T. (2013) Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS One 8, e56535.CrossRefGoogle ScholarPubMed
Das, P.J., Paria, N., Gustafson-Seabury, A., Vishnoi, M., Chaki, S.P., Love, C.C., Varner, D.D., Chowdhary, B.P. and Raudsepp, T. (2010) Total RNA isolation from stallion sperm and testis biopsies. Theriogenology 74, 10991106.e2.CrossRefGoogle ScholarPubMed
Das, P.J., Kour, A., Deori, S., Begum, S.S., Pukhrambam, M., Maiti, S., Sivalingam, J., Paul, V. and Sarkar, M. (2022b) Characterization of Arunachali yak: a roadmap for pastoral sustainability of yaks in India. Sustain 14, 12655.CrossRefGoogle Scholar
Das, S., Roychoudhury, S, Dey, A., Jha, N.K., Kumar, D., Roychoudhury, S, Slama, P. and Kesari, K.K. (2022a) Bacteriospermia and male infertility: role of oxidative stress. Advances in Experimental Medicine and Biology 1358, 141163.CrossRefGoogle ScholarPubMed
Ferrer, M.S., Canisso, I.F., Podico, G., Ellerbrock, R.E., Hurley, D.J. and Palomares, R. (2021) Sperm-bound antisperm antibodies are associated with poor cryosurvival of stallion spermatozoa. Theriogenology 172, 261267.CrossRefGoogle ScholarPubMed
Ferrer, M.S., Laflin, S., Anderson, D.E., Miesner, M.D., Wilkerson, M.J., George, A., Miller, L.M.J., Larson, R. and Garcia Flores, E.O. (2015) Prevalence of bovine sperm-bound antisperm antibodies and their association with semen quality. Theriogenology 84, 94100.CrossRefGoogle ScholarPubMed
Ferrer, M.S. and Miller, L.M.J. (2018) Equine sperm-bound antisperm antibodies are associated with poor semen quality. Theriogenology 118, 212218.CrossRefGoogle ScholarPubMed
Götz, S., García-Gómez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talón, M., Dopazo, J. and Conesa, A. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36, 34203435.CrossRefGoogle ScholarPubMed
Hagiya, K., Hanamure, T., Hayakawa, H., Abe, H., Baba, T., Muranishi, Y. and Terawaki, Y. (2018) Genetic correlations between yield traits or days open measured in cows and semen production traits measured in bulls. Animal 12, 20272031.CrossRefGoogle ScholarPubMed
Han, B., Wang, L., Yu, S., Ge, W., Li, Y., Jiang, H., Shen, W. and Sun, Z. (2021) One potential biomarker for teratozoospermia identified by in-depth integrative analysis of multiple microarray data. Aging (Albany NY) 13, 1020810224.CrossRefGoogle ScholarPubMed
Han, Y. and Peñagaricano, F. (2016) Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genetics 17, 111.CrossRefGoogle ScholarPubMed
Hansen, P.J. (2007) Regulation of immune cells in the uterus during pregnancy in ruminants. Journal of Animal Science 85, E30E31.CrossRefGoogle ScholarPubMed
Kim, D., Langmead, B., Salzberg, S.L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12, 357360.CrossRefGoogle ScholarPubMed
Kour, A., Niranjan, S.K., Malayaperumal, M., Surati, U., Pukhrambam, M., Sivalingam, J., Kumar, A. and Sarkar, M. (2022) Genomic diversity profiling and breed-specific evolutionary signatures of selection in arunachali yak. Genes 13, 254.CrossRefGoogle ScholarPubMed
Kovalski, N.N., De Lamirande, E. and Gagnon, C. (1992) Reactive oxygen species generated by human neutrophils inhibit sperm motility: protective effect of seminal plasma and scavengers. Fertility and Sterility 58, 809816.CrossRefGoogle ScholarPubMed
Kumaresan, A., Elango, K., Datta, T.K. and Morrell, J.M. (2021) Cellular and molecular insights into the etiology of subfertility/infertility in crossbred bulls (Bos taurus × Bos indicus): a review. Frontiers in Cell and Developmental Biology 9, 1859.CrossRefGoogle ScholarPubMed
Leite, R.F., de Losano, J.D.A., Kawai, G.K.V., Rui, B.R., Nagai, K.K., Castiglioni, V.C., Siqueira, A.F.P., D’Avila Assumpção, M.E.O., Baruselli, P.S. and Nichi, M. (2022) Sperm function and oxidative status: effect on fertility in Bos taurus and Bos indicus bulls when semen is used for fixed-time artificial insemination. Animal Reproduction Science 237, 106922.CrossRefGoogle ScholarPubMed
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and Durbin, R. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25, 20782079.CrossRefGoogle ScholarPubMed
Liu, Z., Li, Q., Pan, Z., Qu, X., Zhang, C. and Xie, Z. (2011) Comparative analysis on mRNA expression level and methylation status of DAZL gene between cattle-yaks and their parents. Animal Reproduction Science 126, 258264.CrossRefGoogle ScholarPubMed
Luo, H., Mipam, T.D., Wu, S., Xu, C., Yi, C., Zhao, W., Chai, Z., Chen, X., Wu, Z., Wang, Jikun, Wang, Jiabo, Wang, H., Zhong, J. and Cai, X. (2022) DNA methylome of primary spermatocyte reveals epigenetic dysregulation associated with male sterility of cattleyak. Theriogenology 191, 153167.CrossRefGoogle ScholarPubMed
Mapel, X.M., Hiltpold, M., Kadri, N.K., Witschi, U. and Pausch, H. (2022) Bull fertility and semen quality are not correlated with dairy and production traits in Brown Swiss cattle. JDS Communications 3, 120125.CrossRefGoogle Scholar
Marconi, M., Pilatz, A., Wagenlehner, F., Diemer, T. and Weidner, W. (2009) Are antisperm antibodies really associated with proven chronic inflammatory and infectious diseases of the male reproductive tract? European Urology 56, 708715.CrossRefGoogle ScholarPubMed
Mi, H., Dong, Q., Muruganujan, A., Gaudet, P., Lewis, S. and Thomas, P.D. (2010) PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the gene ontology consortium. Nucleic Acids Research 38, D204D210.CrossRefGoogle ScholarPubMed
Oliveira, L.Z., de Arruda, R.P., de Andrade, A.F.C., Celeghini, E.C.C., dos Santos, R.M., Beletti, M.E., Peres, R.F.G., Oliveira, C.S. and Hossepian de Lima, V.F.M. (2012) Assessment of field fertility and several in vitro sperm characteristics following the use of different Angus sires in a timed-AI program with suckled Nelore cows. Livestock Science 146, 3846.CrossRefGoogle Scholar
Pakravan, N., Hassan, Z.M. and Abbasi, A. (2021) Intra-nasal administration of sperm head turns neutrophil into reparative mode after PGE1- and/or Ang II receptor-mediated phagocytosis followed by expression of sperm head’s coding RNA. International Immunopharmacology 98, 107696.CrossRefGoogle ScholarPubMed
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T. and Salzberg, S.L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33, 290295.CrossRefGoogle ScholarPubMed
Phipps, S., En Lam, C., Mahalingam, S., Newhouse, M., Ramirez, R., Rosenberg, H.F., Foster, P.S. and Matthaei, K.I. (2007) Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110, 15781586.CrossRefGoogle ScholarPubMed
Prakash, B.S., Sarkar, M., Paul, V., Mishra, D.P., Mishra, A. and Meyer, H.H.D. (2005) Postpartum endocrinology and prospects for fertility improvement in the lactating riverine buffalo (Bubalus bubalis) and yak (Poephagus grunniens L.). Livestock Production Science 98, 1323.CrossRefGoogle Scholar
Raheja, K.L., Nadarajah, K. and Burnside, E.B. (1989) Relationship of bull fertility with daughter fertility and production traits in Holstein dairy cattle. Journal of Dairy Science 72, 26792682.CrossRefGoogle ScholarPubMed
Raidan, F.S.S., Tineo, J.S.A., de Moraes, M.M., Escarce, T.C., de Araújo, A.E.M., Gomes, M.M. de C., Ventura, H.T. and Toral, F.L.B. (2017) Associations among growth, scrotal circumference, and visual score of beef cattle in performance tests on pasture or in feedlots. Revista Brasileira de Zootecnia 46, 309316.CrossRefGoogle Scholar
Rezende, F.M., Dietsch, G.O. and Peñagaricano, F. (2018) Genetic dissection of bull fertility in US Jersey dairy cattle. Animal Genetics 49, 393402.CrossRefGoogle ScholarPubMed
Robertson, S.A. and Sharkey, D.J. (2016) Seminal fluid and fertility in women. Fertility and Sterility 106, 511519.CrossRefGoogle ScholarPubMed
Rudd, B.D., Burstein, E., Duckett, C.S., Li, X. and Lukacs, N.W. (2005) Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. Journal of Virology 79, 33503357.CrossRefGoogle ScholarPubMed
Salvi, R., Gawde, U., Idicula-Thomas, S. and Biswas, B. (2022) Pathway analysis of genome wide association studies (GWAS) data associated with male infertility. Reproductive Medicine 3, 235245.CrossRefGoogle Scholar
Schmieder, R. and Edwards, R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863864.CrossRefGoogle ScholarPubMed
Schütte, B., El Hajj, N., Kuhtz, J., Nanda, I., Gromoll, J., Hahn, T., Dittrich, M., Schorsch, M., Müller, T. and Haaf, T. (2013) Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction. Andrology 1, 822829.CrossRefGoogle Scholar
Shamri, R., Xenakis, J.J. and Spencer, L.A. (2011) Eosinophils in innate immunity: an evolving story. Cell Tissue Research 343, 57.CrossRefGoogle ScholarPubMed
Skau, P.A. and Folstad, I. (2005) Does immunity regulate ejaculate quality and fertility in humans? Behavioral Ecology 16, 410416.CrossRefGoogle Scholar
Tannour-Louet, M., Han, S., Louet, J.F., Zhang, B., Romero, K., Addai, J., Sahin, A., Cheung, S.W. and Lamb, D.J. (2014) Increased gene copy number of VAMP7 disrupts human male urogenital development through altered estrogen action. Nature Medicine 20, 715724.CrossRefGoogle ScholarPubMed
Taylor, J.F., Schnabel, R.D. and Sutovsky, P. (2018) Review: genomics of bull fertility. Animal 12, s172s183.CrossRefGoogle ScholarPubMed
Thomas, J., Fishel, S.B., Hall, J.A., Green, S., Newton, T.A. and Thornton, S.J. (1997) Increased polymorphonuclear granulocytes in seminal plasma in relation to sperm morphology. Human Reproduction (Oxford, England) 12, 24182421.CrossRefGoogle ScholarPubMed
Tumennasan, K., Tuya, T., Hotta, Y., Takase, H., Speed, R.M. and Chandley, A.C. (1997) Fertility investigations in the F1 hybrid and backcross progeny of cattle (Bos taurus) and yak (B. grunniens) in Mongolia. Cytogenetics and Cell Genetics 78, 6973.CrossRefGoogle Scholar
Wang, S., Pan, Z., Zhang, Q., Xie, Z., Liu, H. and Li, Q. (2012) Differential mRNA expression and promoter methylation status of SYCP3 gene in testes of yaks and cattle-yaks. Reproduction in Domestic Animals 47, 455462.CrossRefGoogle ScholarPubMed
Wang, Y.F. and Holstein, A.F. (1983) Intraepithelial lymphocytes and macrophages in the human epididymis. Cell Tissue Research 233, 517521.CrossRefGoogle ScholarPubMed
Wolff, H. (1995) The biologic significance of white blood cells in semen. Fertility and Sterility 63, 11431157.Google ScholarPubMed
Wu, H., de Gannes, M.K., Luchetti, G. and Richard Pilsner, J. (2015) Rapid method for the isolation of mammalian sperm DNA. Biotechniques 58, 293300.CrossRefGoogle ScholarPubMed
Wu, H.Y., Rong, Y., Correia, K., Min, J. and Morgan, J.I. (2015) Comparison of the enzymatic and functional properties of three cytosolic carboxypeptidase family members. The Journal of Biological Chemistry 290, 12221232.CrossRefGoogle ScholarPubMed
Wu, Y., Zhang, W.X., Zuo, F. and Zhang, G.W. (2019) Comparison of mRNA expression from Y-chromosome X-degenerate region genes in taurine cattle, yaks and interspecific hybrid bulls. Animal Genetics 50, 740743.CrossRefGoogle ScholarPubMed
Ye, L., Huang, W., Liu, S., Cai, S., Hong, L., Xiao, W., Thiele, K., Zeng, Y., Song, M. and Diao, L. (2021) Impacts of immunometabolism on male reproduction. Frontiers in Immunology 12, 658432.CrossRefGoogle ScholarPubMed
Zhang, G.W., Wu, Y., Luo, Z., Guan, J., Wang, L., Luo, X. and Zuo, F. (2019) Comparison of Y-chromosome-linked TSPY, TSPY2, and PRAMEY genes in Taurus cattle, yaks, and interspecific hybrid bulls. Journal of Dairy Science 102, 62636275.CrossRefGoogle ScholarPubMed
Zhao, S., Sun, W., Chen, S.Y., Li, Y., Wang, J., Lai, S. and Jia, X. (2022) The exploration of miRNAs and mRNA profiles revealed the molecular mechanisms of cattle-yak male infertility. Frontiers in Veterinary Science 9, 1400.CrossRefGoogle ScholarPubMed
Zodinsanga, V., Cheema, R.S. and Mavi, P.S. (2015) Relationship of naturally occurring antisperm antibodies in blood serum and seminal plasma of cattle bulls with sperm function and fertility tests. Open Journal of Animal Sciences 5, 114123.CrossRefGoogle Scholar
Supplementary material: File

Das et al. supplementary material 1

Das et al. supplementary material
Download Das et al. supplementary material 1(File)
File 1.7 MB
Supplementary material: File

Das et al. supplementary material 2

Das et al. supplementary material
Download Das et al. supplementary material 2(File)
File 81.3 KB