Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T06:54:10.029Z Has data issue: false hasContentIssue false

Properties study of silicon carbide thin films prepared by electron cyclotron resonance plasma technology

Published online by Cambridge University Press:  28 October 2011

A. Valovič*
Affiliation:
Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
J. Huran
Affiliation:
Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
M. Kučera
Affiliation:
Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
A.P. Kobzev
Affiliation:
Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russian Federation
Š. Gaži
Affiliation:
Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
Get access

Abstract

Silicon carbide films were deposited at two deposition temperatures 350 °C and 450 °C by means of ECR plasma reactor with two gas mixtures: (1) gas mixture, SiH4 (5 sccm), CH4 (14 sccm), Ar (6 sccm), NH3 (2 sccm) and (2) gas mixture SiH4 (5 sccm), CH4 (14 sccm), H2 (6 sccm), NH3 (2 sccm). The concentration of species in the SiC films was determined by Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD) analytical method simultaneously. Chemical compositions were analyzed by infrared (IR) spectroscopy. Photoluminescence (PL) spectra were measured at 300 K. The RBS and ERD results showed that the concentrations of Si and C in the films are practically the same. The concentration of hydrogen decreased from 30 to 22 at.% with an increasing sample deposition temperature. The films contain a small amount of nitrogen and oxygen. IR results showed the presence of Si-C, Si-N, Si-H, C-H and Si-O bonds. PL results showed the decrease of the PL intensity with an increasing sample deposition temperature.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Motohashi, M., Ashibu, K., Hiruta, Y., Homma, K., Electron. Commun. Jpn. 90, 9 (2007)
Ng, V.M., Xu, M., Huang, S.Y., Long, J.D., Xu, S., Thin Solid Films 506–507, 283 (2006)CrossRef
Colder, H., Marie, P., Pichon, L., Rizk, R., Phys. Stat. Sol. (c) 1, 269 (2004)CrossRef
Vetter, M., Voz, C., Ferre, R., Martin, I., Orpella, A., Puigdollers, J., Andreu, J., Alcubila, R., Thin Solid Films 511–512, 290 (2006)CrossRef
Reitano, R., Foti, G., Pirri, C.F., Giorgis, F., Mandracci, P., Mater. Sci. Eng. C 15, 299 (2001)CrossRef
Künle, M., Kaltenbach, T., Löper, P., Hartel, A., Janz, S., Eibl, O., Nickel, K.-G., Thin Solid Films 519, 151 (2010)CrossRef
Thomas, L., Tomasella, E., Badie, J.M., Berjoan, R., Ducarroir, M., Chem. Vap. Deposition 9, 130 (2003)CrossRef
Kobzev, A.P., Huran, J., Maczka, D., Turek, M., Vacuum 83, S124 (2009)CrossRef
O’Leary, S.K., Johnson, S.R., Lim, P.K., J. Appl. Phys. 82, 3334 (1997)CrossRef
Yoon, S.F., Ahn, J., J. Mater. Sci Technol. 13, 189 (1997)
Friessnegg, T., Boudreau, M., Mascher, P., Knights, A., Simpson, P.J., Puff, W., J. Appl. Phys. 84, 786 (1998)CrossRef
Fraga, M.N., Massi, M., Oliviera, I.C., Maciel, H.S., Filho, S.G.S., Mansano, R.D., J. Mater. Sci. 19, 835 (2008)
Munekata, H., Murasato, S., Kukimoto, H., Appl. Phys. Lett. 37, 536 (1980)CrossRef
Niemann, J., Bauhoffer, W., Thin Solid Films 352, 249 (1999)CrossRef