Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T12:36:45.894Z Has data issue: false hasContentIssue false

Fluid-structure interaction in a free end textile vascular prosthesis

Published online by Cambridge University Press:  14 September 2005

S. Ben Abdessalem*
Affiliation:
Textile Research Unit, Institut Supérieur des Études Technologiques de Ksar Hellal (ISET), Av. Hadj Ali Soua, 5070 Ksar Hellal, Tunisia
B. Durand
Affiliation:
Laboratoire de Physique et Mécanique Textile, École Nationale Supérieure des Industries Textiles de Mulhouse, Mulhouse, France
S. Akesbi
Affiliation:
Laboratoire de Physique et Mécanique Textile, École Nationale Supérieure des Industries Textiles de Mulhouse, Mulhouse, France
N. Chakfe
Affiliation:
Department of cardio-vascular surgery, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
J. G. Kretz
Affiliation:
Department of cardio-vascular surgery, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
Get access

Abstract

Textile cardiovascular prostheses are tubular structures made of polyester filaments. They present particular mechanical properties linked to wavy form of their walls allowing them to stretch under pressure. Pulsatile blood flow was studied in a moving walls vascular prosthesis. First, an image processing device was used to measure prosthesis displacement under air pressure in an free end impregnated textile prosthesis. Then, fluid-structure interaction is simulated with a numerical computation code allowing to couple prosthesis walls motion with blood flow.Navier-Stokes equations governing fluid flow are numerically solved with N3S code based on finite elements method. The numerical process is based on the Arbitrary Lagrangian Eulerian (ALE) formulation allowing moving domains. The obtained results showed a particular distribution of blood flow velocities and shear stress near the graft walls. The flow velocity distribution near a prosthetic surface is strongly influenced by the crimping morphology and deformation. A local flow analysis is imperative to understanding pathologies implying hemodynamic factors and to optimize the prosthesis design.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballyk, P.D., Walsh, C., Butnay, J., Ojha, M., J. Biomech. 31, 229 (1998) CrossRef
S. Ben Abdessalem, Étude et Simulation de l'Écoulement Sanguin dans les Prothèses Cardiovasculaires Textiles, Doctoral thesis, Mulhouse University, France, 1999
Ben Abdessalem, S., Durand, B., S.Akesbi, N. Chakfé, J.F. Lemagnen, M. Beaufigeau, B. Geny, G. Riepe, J.G. Kretz, Eur. J. Vasc. Endovasc. 18, 1 (1999)
B. Durand, F. Dieval, J.F. Lemagnen, N. Chakfé, Approche du Comportement des Matériaux Souples, in “Acquisitions Nouvelles sur les Biomatériaux Vasculaires”, ESVB Mulhouse Conference, December 2001
Fung, Y.C., Liu, S.Q., J. Biomech. Eng. 115, 1 (1993) CrossRef
Lei, M., Kleinstreur, C., Truskey, G.A., J. Biomech. Eng. 119, 343 (1997) CrossRef
Taylor, T.W., Yamaguchi, T., J. Biomech. Eng. 116, 89 (1994) CrossRef
Westerhof, N., Bosman, F., Cornelis, J., Noordergraaf, A., J. Biomech. 2, 121 (1969) CrossRef
Womersley, J.R., Phys. Med. Biol. 2, 178 (1957) CrossRef