Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T19:20:14.606Z Has data issue: false hasContentIssue false

Design of complementary LDMOS in 0.35 μm BiCMOS technology for smart integration

Published online by Cambridge University Press:  02 December 2011

M. Abouelatta-Ebrahim*
Affiliation:
Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA de Lyon, 69621 Villeurbanne Cedex, France Faculty of Engineering, Ain Shams University, Cairo, Egypt
C. Gontrand
Affiliation:
Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA de Lyon, 69621 Villeurbanne Cedex, France
A. Zekry
Affiliation:
Faculty of Engineering, Ain Shams University, Cairo, Egypt
Get access

Abstract

In this paper, an nLDMOS and a pLDMOS are developed by slight modifications of the base process steps of 0.35 μm BiCMOS technology. Extra two masks are used for the formation of the body region and the drift region with slightly added thermal budget and without resorting to high-tilt implants. The specific ON-resistance (RON,SP) and the OFF-state breakdown voltage (BV) are 1.5 mΩ cm2 and 60 V, for the nLDMOS and 3.0 mΩ cm2 and 160 V, for the pLDMOS, so the devices can typically be operated around 42 V supply voltage, which is suitable for the new automotive applications. An isolation mechanism between the power devices is suggested using a deep trench filled with silicon dioxide and undoped polysilicon. The polysilicon has a nearly perfect conformal deposition, that is, both step coverage and bottom coverage are 100%. A simple subcircuit model is built using a two module approach, one for the intrinsic MOS area and the other for the drift region. The Spice model parameters of the intrinsic MOS part are extracted using a system that links the ICCAP extraction tool with the results of the ISE-TCAD tools. The simulation results using the Spice model are compared to the results provided by ISE-TCAD tools, and the accuracy at room temperature is less than 5% for the whole voltage domain. An interface circuit, to convert 0/3.3 V to 0/42 V, suitable for automotive applications, is proposed.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murari, B., Bertotti, F., Vignola, G.A., Smart Power ICs (Springer, Berlin, 1996)CrossRefGoogle Scholar
Baliga, B.J., Proc. IEEE 89, 822 (2001)CrossRef
Baliga, B.J., Fundamentals of Power Semiconductor Devices (Springer-Verlag, New York, 2008)CrossRefGoogle Scholar
Sun, Z., Sun, W., Shi, L., Microelectron. J. 37, 661 (2006)CrossRef
Moens, P., Bosch, G., IEEE Trans. Dev. Mater. Reliab. 6, 349 (2006)CrossRef
Imam, M., Quddus, M., Adams, J., Hossain, Z., IEEE Trans. Electron Devices 51, 141 (2004)CrossRef
Parpia, A., Salama, C.A.T., IEEE Trans. Electron Devices 37, 789 (1990)CrossRef
Han, S.Y., Kim, H.W., Chung, S.K., Microelectron. J. 31, 685 (2000)CrossRef
Terashima, T., Yamamoto, F., Hatasako, K., Hine, S., 120 V BiC DMOS process for the latest automotive and display applications, in IEEE Proc. ISPSD, Santa Fe, USA, 2002, pp. 9396Google Scholar
Kwon, T.H. et al., Newly designed isolated RESURF LDMOS transistor for 60 V BCD process provides 20 V vertical NPN transistor, in Proc. Dev. Research Conf. DRC, 2002, pp. 6768Google Scholar
Parthasarathy, V. et al., A 0.35 μm CMOS based smart power technology for 7 V–50 V applications, in IEEE Proc. ISPSD, Toulouse, France, 2000, pp. 317320Google Scholar
Efland, T.R., Microelectron. J. 32, 409 (2001)CrossRef
Santos, P.M., Costa, V., Gomes, M.C., Borges, B., Lança, M., Microelectron. J. 38, 35 (2007)CrossRef
De Pestel, F. et al., Deep Trench Isolation for a 50 V 0.35 μm Based Smart Power Technology, in IEEE Proc. ESSDERC, Estoril, Portugal, 2003, pp. 191194Google Scholar
Kraus, R., Mattausch, H., IEEE Trans. Power Electron. 13, 452 (1998)CrossRef
Tang, C.W., Tong, K.Y., Solid-State Electron. 46, 2111 (2002)CrossRef
Starzak, L., Zubert, M., Napieralski, A., The new approach to the power semiconductor devices modelling, in Proc. MSM, San Juan, Puerto Rico, 2002, vol. 1, pp. 640644Google Scholar
Moens, P. et al., Future trends in intelligent interface technologies for 42 V battery automotive applications, in IEEE Proc. ESSDERC, Firenze, Italy, 2002, pp. 287290Google Scholar