Skip to main content Accessibility help

AlGaN/GaN MOS-HFETs based on InGaN/GaN MQW structures with Ta2O5 dielectric

  • K.H. Lee (a1), P.C. Chang (a2), S.J. Chang (a3) and Y.C. Yin (a4)


We report on metal-oxide-semiconductor (MOS) AlGaN/GaN heterostructure field effect transistors (HFETs) based on InGaN/GaN multiple quantum well (MQW) structure using Ta2O5 dielectric deposited by electron beam evaporation (EBE) simultaneously for surface passivation and as a gate insulator. The device features a 5-pair MQW layer inserted into the AlGaN/GaN two-channel HFET structure. It results in a raised potential barrier, which leads to better carrier confinement and effective access to the InGaN layer. However, it revealed a pronounced leakage current which may be generated from the bottom Si-doped GaN and/or the sidewall leakage paths due to the exposure of channels after mesa etching. Both passivated MQW-HFET and MOS MQW-HFET present enhanced dc- and pulsed-mode performance compared to unpassivated one. In terms of transfer characteristics, MOS MQW-HFET exhibits the larger and broader main peak yet smaller satellite peak relative to passivated MQW-HFET. The reduced gate and mesa-to-mesa leakage current indicates the successful passivation effect from EBE-Ta2O5 dielectric.


Corresponding author


Hide All
[1]Loghmany, A., Valizadeh, P., J. Phys D: Appl. Phys. 44, 125102 (2011)
[2]Yoshida, S., Ishii, H., Li, J., Wang, D., Ichikawa, M., Solid-State Electron. 47, 589 (2003)
[3]Hsu, Y.P., Chang, S.J., Su, Y.K., Sheu, J.K., Lee, C.T., Wen, T.C., Wu, L.W., Kuo, C.H., Chang, C.S., Shei, S.C., J. Cryst. Growth 261, 466 (2004)
[4]Lee, D.H., Lee, H.K., Yu, J.S., Bae, S.J., Choi, J.H., Kim, D.H., Ju, I.C., Song, K.M., Kim, J.M., Shin, C.S., Semicond. Sci. Technol. 26, 055014 (2011)
[5]Palacios, T., Chakraborty, A., Heikman, S., Keller, S., DenBaars, S.P., Mishra, U.K., IEEE Electron Device Lett. 27, 13 (2006)
[6]Liu, J., Zhou, Y., Zhu, J., Lau, K.M., Chen, K.J., IEEE Electron Device Lett. 27, 10 (2006)
[7]Vetury, R., Zhang, N.Q., Keller, S., Mishra, U.K., IEEE Trans. Electron Devices 48, 560 (2001)
[8]Hasegawa, H., Inagaki, T., Ootomo, S., Hashizume, T., J. Vac Sci. Technol. B: Microelectron. Process. Phenom. 21, 1844 (2003)
[9]DiSanto, D.W., Sun, H.F., Bolognesi, C.R., Appl. Phys. Lett. 88, 013504 (2006)
[10]Antoszewski, J., Gracey, M., Dell, J.M., Faraone, L., Fisher, T.A., Parish, G., Wu, Y.-F., Mishra, U.K., J. Appl. Phys. 87, 3900 (2000)
[11]Hu, X., Koudymov, A., Simin, G., Yang, J., Khan, M.A., Tarakji, A., Shur, M.S., Gaska, R., Appl. Phys. Lett. 79, 2832 (2001)
[12]Khan, M.A., Hu, X., Simin, G., Lunev, A., Yang, J., Gaska, R., Shur, M.S., IEEE Electron Device Lett. 21, 3375 (2000)
[13]Heidelberger, G., Bernát, J., Fox, A., Marso, M., Lüth, H., Gregušová, D., Kordoš, P., Phys. Status Solidi A: Appl. Mat. 203, 1876 (2006)
[14]Khan, M.A., Hu, X., Tarakji, A., Simin, G., Yang, J., Gaska, R., Shur, M.S., Appl. Phys. Lett. 77, 1339 (2000)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed