Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-13T18:51:46.242Z Has data issue: false hasContentIssue false

Partial least square regression: an analysis tool for quantitative non-destructive testing

Published online by Cambridge University Press:  13 August 2014

Yann Le Bihan*
Affiliation:
Laboratoire de Génie Electrique de Paris (LGEP), CNRS UMR8507, Supelec, Université Pierre et Marie Curie-P6, Université Paris Sud-11, 91192 Gif-sur-Yvette, France
József Pávó
Affiliation:
Department of Broadband Infocommunications and Electromagnetic Theory, Budapest University of Technology and Economics, 1521 Budapest, Egry J. u. 18., Hungary
Claude Marchand
Affiliation:
Laboratoire de Génie Electrique de Paris (LGEP), CNRS UMR8507, Supelec, Université Pierre et Marie Curie-P6, Université Paris Sud-11, 91192 Gif-sur-Yvette, France
Get access

Abstract

The scanning of parts in eddy current testing can lead to a large amount of measurement data (predictors). Partial least square (PLS) regression is a mean to reduce the dimensionality of the subsequent inverse problem by projecting the predictors in a latent subspace of reduced dimension maximizing the covariance between the projection and the responses which have to be estimated. In a second step, a regression model is elaborated linking the responses to the latent variables. PLS was originally developed in the field of chemical analysis. In this paper, the PLS method is applied in the field of eddy current testing for the characterization of minute cracks. It is tested firstly on simulated data and then on experimental data. It is found that the reconstruction of the area of minute cracks is made possible by PLS.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sophian, A., Tian, G.Y., Taylor, D., Rudlin, J., NDT&E Int. 36, 37 (2003)CrossRef
Le Diraison, Y., Joubert, P.Y., Placko, D., NDT&E Int. 42, 133 (2009)CrossRef
Wold, H., in Encyclopedia of Statistical Sciences, edited by Kotz, S., Johnson, N.L. (Wiley, New York, 1985), pp. 581591Google Scholar
Wold, S., Sjöström, M., Eriksson, L., Chemom. Intell. Lab. Syst. 58, 109 (2001)CrossRef
Zamprogna, E., Barolo, M., Seborg, D.E., Control Eng. Pract. 12, 917 (2004)CrossRef
Randal McIntosh, A., Lobaugh, N.J., NeuroImage 23, 250 (2004)CrossRef
Henseler, J., Ringle, C.M., Sinkovics, R.R., in Advances in International Marketing, edited by Zou, S. (Emerald, Bingley, 2009), pp. 277319CrossRefGoogle Scholar
Smoliak, B.V., Wallace, J.M., Stoelinga, M.T., Mitchell, T.P., Geophys. Res. Lett. 37, 5 (2010)CrossRef
Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S., Human detection using partial least squares analysis, in Int. Conf. on Computer Vision, Kyoto, Japan, 2009Google Scholar
Boulesteix, A.L., Strimmer, K., Brief. Bioinform. 8, 32 (2006)CrossRef
De Jong, S., Chemom. Intell. Lab. Syst. 18, 251 (1993)CrossRef
Feist, W.D., Tillack, G.R., Determination of the POD for high resolution eddy current inspection on turbine disks, in 7th Europ Conf. on Non-Destructive Testing, Copenhagen, Denmark, 1998Google Scholar
Le Bihan, Y., Pávó, J., Marchand, C., NDT&E Int. 39, 476 (2006)CrossRef
Barker, M., Rayens, R., J. Chemom. 17, 166 (2003)CrossRef
Dai, J.J., Lieu, L., Rocke, D., Stat. Appl. Genet. Mol. Biol. 5, 6 (2006)CrossRef