Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T23:10:42.612Z Has data issue: false hasContentIssue false

Maximal near-field radiative heat transfer between two plates

Published online by Cambridge University Press:  27 September 2013

Elyes Nefzaoui*
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, Département Fluides, Thermique, Combustion, ENSIP-Bâtiment de mécanique, 2 rue Pierre Brousse, 86022 Poitiers Cedex, France
Younès Ezzahri
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, Département Fluides, Thermique, Combustion, ENSIP-Bâtiment de mécanique, 2 rue Pierre Brousse, 86022 Poitiers Cedex, France
Jérémie Drévillon
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, Département Fluides, Thermique, Combustion, ENSIP-Bâtiment de mécanique, 2 rue Pierre Brousse, 86022 Poitiers Cedex, France
Karl Joulain
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, Département Fluides, Thermique, Combustion, ENSIP-Bâtiment de mécanique, 2 rue Pierre Brousse, 86022 Poitiers Cedex, France
Get access

Abstract

Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Polder, D., Van Hove, M., Phys. Rev. B 4, 3303 (1971)CrossRef
Cravalho, E.G., Tien, C.L., Caren, R.P., J. Heat Transfer 89, 351 (1967)CrossRef
Rousseau, E., Siria, A., Jourdan, G., Voltz, S., Comin, F., Chevrier, J., Greffet, J.-J., Nat. Photon. 3, 514 (2009)CrossRef
Kittel, A., Müller-Hirsch, W., Parisi, J., Biehs, S.-A., Reddig, D., Holthaus, M., Phys. Rev. Lett. 95, 224301 (2005)CrossRef
Narayanaswamy, A., Shen, S., Chen, G., Phys. Rev. B 78, 115303 (2008)CrossRef
Guha, B., Otey, C., Poitras, C.B., Fan, S., Lipson, M., Nano Lett. 12, 4546 (2012)CrossRef
Basu, S., Zhang, Z.M., Fu, C.J., Int. J. Energy Res. 33, 1203 (2009)CrossRef
Francoeur, M., Vaillon, R., Mengüc, M.P., IEEE Trans. Energy. Conver. 26, 686 (2011)CrossRef
Rousseau, E., Laroche, M., Greffet, J.-J., J. Appl. Phys. 111, 014311 (2012)CrossRef
Basu, S., Lee, B.J., Zhang, Z.M., J. Heat Trans. 132, 023302 (2010)CrossRef
Francoeur, M., Mengüc, M.P., Vaillon, R., J. Phys. D: Appl. Phys 43, 075501 (2010)CrossRef
Laroche, M., Carminati, R., Greffet, J.-J., J. Appl. Phys. 100, 063704 (2006)CrossRef
Rousseau, E., Laroche, M., Greffet, J.-J., Appl. Phys. Lett. 95, 231913 (2009)CrossRef
Volokitin, A.I., Persson, B.N.J., Rev. Mod. Phys. 79, 1291 (2007)CrossRef
Biehs, S.-A., Rousseau, E., Greffet, J.-J., Phys. Rev. Lett. 105, 234301 (2010)CrossRef
Ben-Abdallah, P., Joulain, K., Phys. Rev. B 82, 121419 (2010)CrossRef
Wang, X.J., Basu, S., Zhang, Z.M., J. Phys. D: Appl. Phys 42, 245403 (2009)CrossRef
Rousseau, E., Laroche, M., Greffet, J.-J., J. Quant. Spectrosc. Radiat. Transfer 111, 1005 (2010)CrossRef
Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables , Applied mathematics series (Dover Publ., 1965)Google Scholar
Osácar, C., Palacián, J., Palacios, M., Celest. Mech. Dyn. Astron. 62, 93 (1995)CrossRef
Basu, S., Lee, B.J., Zhang, Z.M., ASME Conference Proceedings 2008, 765 (2008)
Marquier, F., Joulain, K., Mulet, J.P., Carminati, R., Greffet, J.J., Opt. Commun. 237, 379 (2004)CrossRef
Nefzaoui, E., Drévillon, J., Joulain, K., J. Appl. Phys. 111, 084316 (2012)CrossRef
Basu, S., Zhang, Z.M., J. Appl. Phys. 105, 093535 (2009)CrossRef
Basu, S., Francoeur, M., Appl. Phys. Lett. 98, 243120 (2011)CrossRef
Svetovoy, V.B., van Zwol, P.J., Chevrier, J., Phys. Rev. B 85, 155418 (2012)CrossRef
Messina, R., Hugonin, J-P., Greffet, J.-J., Marquier, F., De Wilde, Y., Belarouci, A., Frechette, L., Cordier, Y., Ben-Abdallah, P., arXiv:1211.3145 (2012)
Messina, R., Ben-Abdallah, P., arXiv:1207.1476 (2012)
Ilic, O., Jablan, M., Joannopoulos, J.D., Celanovic, I., Soljacic, M., Opt. Express 20, A366 (2012)CrossRef
Chapuis, P.-O., Volz, S., Henkel, C., Joulain, K., Greffet, J.-J., Phys. Rev. B 77, 035431 (2008)CrossRef
Borghesi, A., Chen-Jia, C., Guizzetti, G., Marabelli, F., Nosenzo, L., Reguzzoni, E., Stella, A., Ostoja, P., Il Nuovo Cimento D 5, 292 (1985)CrossRef
Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, Boston, 1985)Google Scholar