Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T16:44:46.608Z Has data issue: false hasContentIssue false

Four-bar linkage reconfigurable robotic wheel: Design, kinematic analysis, and experimental validation for adaptive size modification

Published online by Cambridge University Press:  13 May 2024

X. Yamile Sandoval-Castro*
Affiliation:
Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, 64849, México
Sergio Muñoz-Gonzalez
Affiliation:
Departamento de Mecatrónica, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Cerro Blanco No. 141 Col. Colinas del Cimatario, Querétaro, 76090, México
Mario A. Garcia-Murillo
Affiliation:
Department of Mechanical Engineering, Universidad de Guanajuato, Salamanca, Guanajuato, 36885, México
Pedro D. Ferrusca-Monroy
Affiliation:
Departamento de Mecatrónica, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Cerro Blanco No. 141 Col. Colinas del Cimatario, Querétaro, 76090, México
Maxiamiano F. Ruiz-Torres
Affiliation:
Departamento de Mecatrónica, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Cerro Blanco No. 141 Col. Colinas del Cimatario, Querétaro, 76090, México
*
Corresponding author: X. Yamile Sandoval-Castro; Email: xyamile.sc@gmail.com

Abstract

This article presents the development of a robot capable of modifying its size through a wheel reconfiguration strategy. The reconfigurable wheel design is based on a four-bar retractable mechanism that achieves variation of the effective radius of the wheel. A reconfiguration index is introduced based on the number of retractable mechanisms that predicts the radius of configuration according to the number of mechanisms implemented in the wheel. The kinematics of the retractable mechanism is studied to determine the theoretical reconfiguration radius during the transformation process, it is also evaluated numerically with the help of the GeoGebra software, and it is validated experimentally by image analysis using the Tracker software. The transformation process of the robot is investigated through an analysis of forces that consider the wheel in contact with the obstacle, the calculation of the wheel torque and the height of the obstacle to be overcome are presented. On the other hand, the experimental validation of the robot reconfiguration process is presented through the percentage of success shown by the robot to overcome obstacles of 50, 75, 100 and 125 mm. In addition, measurements of energy consumption during the transformation process are reported. Reconfigurable wheels, capable of adapting their size, offer innovative solutions to various challenges across different applications such as robotic exploration and search and rescue missions to industrial settings. Some key issues that these wheels can address include terrain adaptability enhancing a robot’s mobility over uneven surfaces, or obstacles; enhanced robotic design; cost-effective design; space efficiency; and versatility in applications.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nodehi, S., Bruzzone, L. and Fanghella, P., “Porcospino, spined single-track mobile robot for inspection of narrow spaces,” Robotica 41(11), 34463462 (2023). https://doi.org/10.1017/S0263574723001108.CrossRefGoogle Scholar
Rubio, F., Valero, F. and Llopis-Albert, C., “A review of mobile robots: Concepts, methods, theoretical framework, and applications,” Int. J. Adv. Robot. Syst. 16(2) (2019). https://doi.org/10.1177/1729881419839596.CrossRefGoogle Scholar
Oliveira, L. F. P., Moreira, A. P. and Silva, M. F., “Advances in forest robotics: A state-of-the-art survey,” Robotics 10, 53 (2021). MDPI AG, https://doi.org/10.3390/robotics10020053.Google Scholar
Russo, M. and Ceccarelli, M., “A survey on mechanical solutions for hybrid mobile robots,” Robotics 9(2), 32 (2020). https://doi.org/10.3390/robotics9020032.CrossRefGoogle Scholar
Maqsood, A., Afzal, H., Rafiq Mufti, M. and Aslam, W., “Bio-inspired hybrid locomotion in mobile robots: A comprehensive survey,” J. Inform. Commun. Technol. Robot. Appl. 9(2), 112 (2018), http://jictra.com.pk/index.php/jictra/article/view/93.Google Scholar
Luo, Z., Shang, J., Wei, G. and Ren, L., “A reconfigurable hybrid wheel-track mobile robot based on Watt II six-bar linkage,” Mech. Mach. Theory 128, 1632 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.04.020.CrossRefGoogle Scholar
Sánchez, R., Sierra-García, J. E. and Santos, M., “Modelado de un AGV híbrido triciclo-diferencial,” Rev. Iberoam. Autom. Inform. Ind. 19(1), 8495 (2021). https://doi.org/10.4995/riai.2021.14622.CrossRefGoogle Scholar
Munoz-Ceballos, N. D. and Suarez-Rivera, G., “Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: Una revisión,” Rev. Iberoam. Autom. Inform. Ind. 19(2), 132143 (2022). https://doi.org/10.4995/riai.2022.16427.CrossRefGoogle Scholar
García, J. M., Yánez, P. and Martínez, J. E., “Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados,” Rev. Iberoam. Autom. Inform. Ind. 20(1), 1324 (2022). https://doi.org/10.4995/riai.2022.17161.CrossRefGoogle Scholar
Godoy-Calvo, J., Lin-Yang, D., Vázquez-Martín, R. and García-Cerezo, A., “Exploración dinámica de fronteras en entornos desconocidos basada en la entropía,” Rev. Iber. Autom. Inform. Ind. 20(2), 213223 (2023). https://doi.org/10.4995/riai.2023.18740.CrossRefGoogle Scholar
Castaño-Amorós, J., Páez-Ubieta, I. D. L., Gil, P. and Puente, S. T., “Manipulación visual-táctil para la recogida de residuos domésticos en exteriores,” Rev. Iberoam. Autom. Inform. Ind. 20(2), 163174 (2023). https://doi.org/10.4995/riai.2022.18534.CrossRefGoogle Scholar
Fragapane, G., de Koster, R., Sgarbossa, F. and Strandhagen, J. O., “Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda,” Eur. J. Oper. Res. 294(2), 405426 (2021). https://doi.org/10.1016/j.ejor.2021.01.019.CrossRefGoogle Scholar
Niloy, M. A. K., Shama, A., Chakrabortty, R. K., Ryan, M. J., Badal, F. R., Tasneem, Z., Ahamed, M. H., Moyeen, S. I., Das, S. K., Ali, M. F., Islam, M. R. and Saha, D. K., “Critical design and control issues of indoor autonomous mobile robots: A review,” IEEE Access 9, 3533835370 (2021). https://doi.org/10.1109/ACCESS.2021.3062557.CrossRefGoogle Scholar
Zhang, H., Lin, W. and Chen, A., “Path planning for the mobile robot: A review,” Symmetry 10(10), 450 (2018). https://doi.org/10.3390/sym10100450.CrossRefGoogle Scholar
Zacharia, P. T. and Xidias, E. K., “AGV routing and motion planning in a flexible manufacturing system using a fuzzy-based genetic algorithm,” Int. J. Adv. Manuf. Technol. 109(7-8), 18011813 (2020). https://doi.org/10.1007/s00170-020-05755-3.CrossRefGoogle Scholar
Llamazares, Á., Molinos, E. and Ocaña, M., “Detection and tracking of moving obstacles (DATMO): A review,” Robotica 38(5), 761774 (2020). https://doi.org/10.1017/S0263574719001024.CrossRefGoogle Scholar
Song, Z., Luo, Z., Wei, G. and Shang, J., “A portable six-wheeled mobile robot with reconfigurable body and self-adaptable obstacle-climbing mechanisms,” J. Mech. Robot. 14(5), 051010 (2022). https://doi.org/10.1115/1.4053529.CrossRefGoogle Scholar
Zhong, M., Guo, W., Li, M. and Xu, J., “Tanbot: A Mobile Self-Reconfigurable Robot Enhanced with Embedded Positioning Module,” In: 2008 IEEE Workshop on Advanced Robotics and Its Social Impacts (2008), pp. 1–5. https://doi.org/10.1109/ARSO.2008.4653595.Google Scholar
Ushimi, N., “A concept and development of a four wheeled reconfigurable mobile robot by parallel linkage mechanism and an influence of a driving wheel sideslip on grassy slopes,” In: 2019 19th International Conference on Control, Automation and Systems (ICCAS) (2019), pp. 15491553. https://doi.org/10.23919/ICCAS47443.2019.8971632.CrossRefGoogle Scholar
Attia, T. S. A., Design and development of a novel reconfigurable wheeled robot for off-road applications (Doctoral dissertation, Virginia Tech). (2018). http://hdl.handle.net/10919/85848.Google Scholar
Niu, J., Wang, H., Shi, H., N. Pop, D. Li, S. Li and S. Wu, “Study on structural modeling and kinematics analysis of a novel wheel-legged rescue robot,” Int. J. Adv. Robot. Syst. 15(1) (2018). https://doi.org/10.1177/1729881417752758.CrossRefGoogle Scholar
Yehezkel, L., Berman, S. and Zarrouk, D., “Overcoming obstacles with a reconfigurable robot using reinforcement learning,” IEEE Access 8, 217541217553 (2020). https://doi.org/10.1109/ACCESS.2020.3040896.CrossRefGoogle Scholar
Coronel, M. and Zarrouk, D., “Overcoming obstacles using tail STAR: A novel sprawling robot with a two-joint tail,” IEEE Robot. Automat. Lett. 8(4), 23172324 (2023). https://doi.org/10.1109/LRA.2023.3248491.CrossRefGoogle Scholar
Cosenza, C., Niola, V., Pagano, S. and Savino, S., “Theoretical study on a modified rocker-bogie suspension for robotic rovers,” Robotica 41(10), 29152940 (2023). https://doi.org/10.1017/S0263574723000656.CrossRefGoogle Scholar
Karamipour, E., Dehkordi, S. F. and Korayem, M. H., “Reconfigurable mobile robot with adjustable width and length: Conceptual design, motion equations and simulation,” J. Intell. Robot. Syst. 99(3-4), 797814 (2020). https://doi.org/10.1007/s10846-020-01163-7.CrossRefGoogle Scholar
Banerjee, H., Kakde, S. and Ren, H., “OrumBot: Origami-Based Deformable Robot Inspired by an Umbrella Structure,” In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (2018), pp. 910915. https://doi.org/10.1109/ROBIO.2018.8664762.CrossRefGoogle Scholar
Jeong, D. and Lee, K., “OrigamiBot-II: An Amphibious Robot With Reconfigurable Origami Wheels for Locomotion in Dynamic Environments,” In: ASME International Mechanical Engineering Congress and Exposition, Volume 4A: Dynamics, Vibration, and Control (2015), p. página V04AT04A026. https://doi.org/10.1115/IMECE2015-53081.Google Scholar
Lee, D., Kim, J., Kim, S., Koh, J. and Cho, K., “The Deformable Wheel Robot Using Magic-Ball Origami Structure,” In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 6B: 37th Mechanisms and Robotics Conference (2013), p. V06BT07A040. https://doi.org/10.1115/DETC2013-13016.Google Scholar
Payne, C. J., Wamala, I., Abah, C., Thalhofer, T., Saeed, M., Bautista-Salinas, D., Horvath, M. A., Vasilyev, N. V., Roche, E. T., Pigula, F. A. and Walsh, C. J., “An implantable extracardiac soft robotic device for the failing heart: Mechanical coupling and synchronization,” Soft. Robot. 4(3), 241250 (2017). https://doi.org/10.1089/soro.2016.0076.CrossRefGoogle ScholarPubMed
Zheng, L., Zhang, P., Hu, Y., Yu, G., Song, Z. and Zhang, J., “A novel high adaptability outdoor mobile robot with diameter-variable wheels,” In: 2011 IEEE International Conference on Information and Automation (2011), pp. 169174. https://doi.org/10.1109/ICINFA.2011.5948982.CrossRefGoogle Scholar
Kim, Y.-S., Jung, G.-P., Kim, H., Cho, K.-J. and Chu, C.-N., “Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels,” IEEE Trans. Robot. 30(6), 14871498 (2014). https://doi.org/10.1109/TRO.2014.2365651.CrossRefGoogle Scholar
Zheng, C. and Lee, K., “WheeLeR: Wheel-leg reconfigurable mechanism with passive gears for mobile robot applications,” In: 2019 International Conference on Robotics and Automation (ICRA) (2019), pp. 92929298. https://doi.org/10.1109/ICRA.2019.8793686.CrossRefGoogle Scholar
Chen, H.-Y., Wang, T.-H., Ho, K.-C., Ko, C.-Y., Lin, P.-C. and Lin, P.-C., “Development of a novel leg-wheel module with fast transformation and leaping capability,” Mech. Mach. Theory 163, 104348 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104348.CrossRefGoogle Scholar
Zhang, S., Yao, J.-t., Wang, Y.-b., Liu, Z.-s., Xu, Y.-d. and Zhao, Y.-s., “Design and motion analysis of reconfigurable wheel-legged mobile robot,” Def. Technol. 18(6), 10231040 (2022). https://doi.org/10.1016/j.dt.2021.04.013.CrossRefGoogle Scholar
Mardani, A., Ebrahimi, S. and Alipour, K., “6AP wheel: A new transformable robotic wheel for traction force improvement and halting avoidance of a UGV on soft terrains,” Mech. Based Des. Struc. 50(10), 33703385 (2022). https://doi.org/10.1080/15397734.2020.1807360.CrossRefGoogle Scholar