Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T05:47:08.708Z Has data issue: false hasContentIssue false

Camera-based control system of a planar cable-driven parallel robot intended for functional rehabilitation

Published online by Cambridge University Press:  26 December 2024

Kaiss Ghrairi*
Affiliation:
The Mechanical Laboratory of Sousse (LMS), National School of Engineers of Sousse, University of Sousse, Tunisia
Houssein Lamine
Affiliation:
The Mechanical Laboratory of Sousse (LMS), National School of Engineers of Sousse, University of Sousse, Tunisia
Sami Bennour
Affiliation:
The Mechanical Laboratory of Sousse (LMS), National School of Engineers of Sousse, University of Sousse, Tunisia National School of Engineers of Monastir, University of Monastir, Tunisia
Abdelbadia Chaker
Affiliation:
Department GMSC, Pprime Institute, CNRS, University of Poitiers ENSMA, Poitiers, France
*
Corresponding author: Kaiss Ghrairi, Email: ghrairi.kaiss@eniso.u-sousse.tn

Abstract

This paper investigates a closed-loop visual servo control scheme for controlling the position of a fully constrained cable-driven parallel robot (CDPR) designed for functional rehabilitation tasks. The control system incorporates real-time position correction using an Intel RealSense camera. Our CDPR features four cables exiting from pulleys, driven by AC servomotors, to move the moving platform (MP). The focus of this work is the development of a control scheme for a closed-loop visual servoing system utilizing depth/RGB images. The developed algorithm uses this data to determine the actual Cartesian position of the MP, which is then compared to the desired position to calculate the required Cartesian displacement. This displacement is fed into the inverse kinematic model to generate the servomotor commands. Three types of trajectories (circular, square, and triangular) are used to test the controller’s compliance with its position. Compared to the open-loop control of the robot, the new control system increases positional accuracy and effectively handles cable behavior, various perturbations, and modeling errors. The obtained results showed significant improvements in control performance, notably reduced root mean square error and maximal error in terms of position.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tang, X., “An overview of the development for cable-driven parallel manipulator,” Adv. Mech. Eng. 6, 823028 (2014). doi: 10.1155/2014/823028.CrossRefGoogle Scholar
Lamine, H., Romdhane, L., Saafi, H. and Bennour, S., “Design-to-workspace synthesis of a cable robot used in legs training machine,” Robotica 38(9), 17031714 (2019). doi: 10.1017/S026357471900170X.CrossRefGoogle Scholar
Zarebidoki, M., Dhupia, J. S. and Xu, W., “A review of cable-driven parallel robots: Typical configurations, analysis techniques, and control methods,” IEEE Robot. Autom. Mag. 29(3), 89106 (2022). doi: 10.1109/MRA.2021.3138387.CrossRefGoogle Scholar
Qian, S., Zi, B., Shang, W.-W. and Xu, Q.-S., “A review on cable-driven parallel robots,” Chin. J. Mech. Eng. 31(1), 66 (2018). doi: 10.1186/s10033-018-0267-9.CrossRefGoogle Scholar
Idà, E. and Mattioni, V., “Cable-driven parallel robot actuators: State of the art and novel Servo-Winch concept,” Actuators 11(10), 290 (2022). doi: 10.3390/act11100290.CrossRefGoogle Scholar
Luan, P. G. and Thinh, N. T., “Wrench-closure condition of cable-driven parallel manipulators,” Appl. Sci. 11(9), 4228 (2021).CrossRefGoogle Scholar
Dinh, T. N., Park, J. and Park, K.-S., “Design and evaluation of disturbance observer algorithm for cable-driven parallel robots,” Microsyst. Technol. 26(11), 33773387 (2020). doi: 10.1007/s00542-020-04883-w.CrossRefGoogle Scholar
Zhang, Z., Shao, Z. and Wang, L., “Optimization and implementation of a high-speed 3-DOFs translational cable-driven parallel robot,” Mech. Mach. Theory 145, 103693 (2020). doi: 10.1016/j.mechmachtheory.2019.103693.CrossRefGoogle Scholar
Zeghloul, S. F., Laribi, M. A. and Gazeau, J.-P., “Dynamic simulation of a cable-based gait training machine,” Robot. Mechatron. 37, 199207 (2015). doi: 10.1007/978-3-319-22368-1_20.Google Scholar
Ennaiem, F., A. Chaker, J. S. S. Arévalo, M. A. Laribi, S. Bennour, A. Mlika, L. Romdhane and S. Zeghloul, “Sensitivity based selection of an optimal cable-driven parallel robot design for rehabilitation purposes,” Robotics 10(1), 7 (2020). doi: 10.3390/robotics10010007.CrossRefGoogle Scholar
Venkata Sai Prathyush, I., Ceccarelli, M. and Russo, M., “Control design for CABLEankle, a cable driven manipulator for ankle motion assistance,” Actuators 11(2), 63 (2022). doi: 10.3390/act11020063.CrossRefGoogle Scholar
Mao, Y. and Agrawal, S. K.. “Transition from mechanical arm to human arm with CAREX: A cable driven ARm EXoskeleton (CAREX) for neural rehabilitation,” In: 2012 IEEE International Conference on Robotics and Automation (IEEE, 2012) pp. 24572462. doi: 10.1109/ICRA.2012.6224906.CrossRefGoogle Scholar
Shoaib, M., Asadi, E., Cheong, J. and Bab-Hadiashar, A., “Cable driven rehabilitation robots: Comparison of applications and control strategies,” IEEE Access 9, 110396110420 (2021). doi: 10.1109/ACCESS.2021.3102107.CrossRefGoogle Scholar
Riehl, N., Gouttefarde, M., Krut, S., Baradat, C. and Pierrot, F.. “Effects of non-negligible cable mass on the static behavior of large workspace cable-driven parallel mechanisms,” In: 2009 IEEE International Conference on Robotics and Automation (IEEE, 2009) pp. 21932198. doi: 10.1109/ROBOT.2009.5152576.CrossRefGoogle Scholar
Zake, Z., Chaumette, F., Pedemonte, N. and Caro, S., “Vision-based control and stability analysis of a cable-driven parallel robot,” IEEE Robot. Autom. Lett. 4(2), 10291036 (2019). doi: 10.1109/LRA.2019.2893611.CrossRefGoogle Scholar
Zake, Z., Chaumette, F., Pedemonte, N. and Caro, S., “Robust 21/2D visual servoing of a cable-driven parallel robot thanks to trajectory tracking,” IEEE Robot. Autom. Lett. 5(2), 660667 (2020).CrossRefGoogle Scholar
Jung, J., Piao, J., Park, S., Park, J.-O. and Ko, S. Y.. “Analysis of cable tension of high speed parallel cable robot: High speed position tracking of winch,” In: 2016 16th International Conference on Control, Automation and Systems (ICCAS) (IEEE, 2016), pp. 10531056. doi: 10.1109/ICCAS.2016.7832439.CrossRefGoogle Scholar
Ramadour, R., Chaumette, F. and Merlet, J.-P.. “Grasping objects with a cable-driven parallel robot designed for transfer operation by visual servoing,” In: 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp. 44634468. doi: 10.1109/ICRA.2014.6907510.CrossRefGoogle Scholar
Balaguer, C. and Abderrahim, M., Eds. Robotics and Automation in Construction (InTech, 2008). doi: 10.5772/86.CrossRefGoogle Scholar
Kong, S., Tian, M., Qiu, C., Wu, Z. and Yu, J., “IWSCR: An intelligent water surface cleaner robot for collecting floating garbage,” IEEE Trans. Syst. Man Cybern. Syst. 51(10), 63586368 (2021). doi: 10.1109/TSMC.2019.2961687.CrossRefGoogle Scholar
Do, H. M., Choi, T., Park, D. and Kyung, J.. “Automatic cell production for cellular phone packing using two dual-arm robots,” In: 2015 15th International Conference on Control, Automation and Systems (ICCAS) (IEEE, 2015), pp. 20832086. doi: 10.1109/ICCAS.2015.7364713.CrossRefGoogle Scholar
Miller, S., van den Berg, J., Fritz, M., Darrell, T., Goldberg, K. and Abbeel, P., “A geometric approach to robotic laundry folding,” Int. J. Robot. Res. 31(2), 249267 (2011). doi: 10.1177/0278364911430417.CrossRefGoogle Scholar
Begey, J., Cuvillon, L., Lesellier, M., Gouttefarde, M. and Gangloff, J., “Dynamic control of parallel robots driven by flexible cables and actuated by position-controlled winches,” IEEE Trans. Robot. 35(1), 286293 (2019). doi: 10.1109/TRO.2018.2875415.CrossRefGoogle Scholar
Martinez-Martin, E. and del Pobil, A., “Vision for robust robot manipulation,” Sensors 19(7), 1648 (2019). doi: 10.3390/s19071648.CrossRefGoogle ScholarPubMed
Garcia-Fidalgo, E. and Ortiz, A., “Vision-based topological mapping and localization methods: A survey,” Robot. Auton. Syst. 64, 120 (2015). doi: 10.1016/j.robot.2014.11.009.CrossRefGoogle Scholar
Bayani, H., Masouleh, M. T. and Kalhor, A., “An experimental study on the vision-based control and identification of planar cable-driven parallel robots,” Robot. Auton. Syst. 75, 187202 (2016). doi: 10.1016/j.robot.2015.10.002.CrossRefGoogle Scholar
Pramujati, B., Syamlan, A. T., Nurahmi, L. and Tamara, M. N., “Study on the application of model-based control algorithm for a suspended cable-driven parallel robot,” Int. J. Technol. 14(4), 854 (2023). doi: 10.14716/ijtech.v14i4.6458.CrossRefGoogle Scholar
Kemp, C. C. and Edsinger, A., “Robot manipulation of human tools: Autonomous detection and control of task relevant features,” (2006).Google Scholar
Edsinger, A.. Robot Manipulation in Human Environments (CSAIL Technical Reports, Cambridge, MA, USA., 2007).Google Scholar
Pop, N., Ulinici, I., Pisla, D., Carbone, G. and Nysibalieva, A.. “Kinect based user-friendly operation of LAWEX for upper limb exercising task,” In: 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) (IEEE, 2020), pp. 15. doi: 10.1109/AQTR49680.2020.9129914.CrossRefGoogle Scholar
Melchiorre, M., Scimmi, L. S., Mauro, S. and Pastorelli, S. P., “Vision-based control architecture for human-robot hand-over applications,” Asian J. Control 23(1), 105117 (2020). doi: 10.1002/asjc.2480.CrossRefGoogle Scholar
Cio, Y.-S. L.-K., Raison, M., Leblond Menard, C. and Achiche, S., “Proof of concept of an assistive robotic arm control using artificial stereovision and eye-tracking,” IEEE Trans. Neur. Syst. Rehabil. Eng. 27(12), 23442352 (2019). doi: 10.1109/TNSRE.2019.2950619.CrossRefGoogle ScholarPubMed
Jia, Z., M. Lin, Z. Chen and S. Jian, “Vision-based robot manipulation learning via human demonstrations,” arXiv (2020). https://arxiv.org/abs/2003.00385.Google Scholar
You, A., Sukkar, F., Fitch, R., Karkee, M. and Davidson, J. R., “An efficient planning and control framework for pruning fruit trees,” Unpublished, 39303936 (2020).Google Scholar
Lachat, E., H. Macher, T. Landes and P. Grussenmeyer, “Assessment of the accuracy of 3D models obtained with DSLR camera and Kinect v2,” SPIE Proc. (2015). doi: 10.1117/12.2184866.Google Scholar
Lourenço, F. and Araujo, H.. “Intel RealSense SR305, D415 and L515: Experimental evaluation and comparison of depth estimation,” In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (SCITEPRESS - Science and Technology Publications, 2021) pp. 362369. doi: 10.5220/0010254203620369.CrossRefGoogle Scholar
Siena, F. L., Byrom, B., Watts, P. and Breedon, P., “Utilising the Intel RealSense camera for measuring health outcomes in clinical research,” J. Med. Syst. 42(3), 53 (2018). doi: 10.1007/s10916-018-0905-x.CrossRefGoogle ScholarPubMed
Dallej, T., Gouttefarde, M., Andreff, N., Dahmouche, R. and Martinet, P.. “Vision-based modeling and control of large-dimension cable-driven parallel robots,” In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 15811586. doi: 10.1109/IROS.2012.6385504.CrossRefGoogle Scholar
Ghrairi, K., A. Chaker, S. Salah and S. Bennour, “Development of a Cable-Driven Parallel Robots for Functional Rehabilitation,” In: Lecture Notes in Mechanical Engineering (2022) pp. 554563. doi: 10.1007/978-3-031-14615-2_62.Google Scholar
Sonoda, T., Sweetser, J. N., Khuong, T., S. Brook and A. Grunnet-Jepsen, High-speed capture mode of Intel real sense depth camera d435 (2023), pp. 1230. https://dev.intelrealsense.com/docs/high-speed-capture-mode-of-intel-realsense-depth-camera-d435.Google Scholar
Olson, E.. “AprilTag: A robust and flexible visual fiducial system,” In: 2011 IEEE International Conference on Robotics and Automation (IEEE, 2011). doi: 10.1109/ICRA.2011.5979561.CrossRefGoogle Scholar