Hostname: page-component-cc8bf7c57-j4qg9 Total loading time: 0 Render date: 2024-12-11T07:38:05.993Z Has data issue: false hasContentIssue false

Age of the Younger Laxá Lava and Lake Mývatn, Northern Iceland, Determined by AMS Radiocarbon Dating

Published online by Cambridge University Press:  18 July 2016

Ulf Hauptfleisch*
Affiliation:
Mývatn Research Station, Skútustaðir, IS-660 Mývatn, Iceland. Also: University of Iceland, Faculty of Earth Sciences, Sturlugata 7, IS-101 Reykjavík, Iceland
Árni Einarsson
Affiliation:
Mývatn Research Station, Skútustaðir, IS-660 Mývatn, Iceland. Also: University of Iceland, Institute of Life and Environmental Sciences, Sturlugata 7, IS-101 Reykjavík, Iceland
*
Corresponding author. Email: ulh2@hi.is
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lake Mývatn and several smaller lakes in northern Iceland were formed by the large Holocene lava flow of the Younger Laxá Lava (YLL). The age of the YLL was estimated by tephrochronology at 1800–2300 BP (Thorarinsson 1951). Conventional radiocarbon dating of charred vegetation beneath the YLL (Thorarinsson 1964) yielded uncalibrated ages of 1940 ± 270 14C yr BP (Yale), 2110 ± 140 14C yr BP (Copenhagen), and 1990 ± 50 14C yr BP (Winnipeg). Ongoing palcolimnological research at Lake Mývatn requires a more precise age estimation of the YLL. Charcoal samples from beneath the YLL were collected at Presthvammur in 2007 and analyzed by accelerator mass spectrometry (AMS) 14C measurements. The reliability of the conventional 14C ages of the samples Yale, Copenhagen, and Winnipeg was re-evaluated, applying criteria from Pettit et al. (2003) and Graf (2009). The result of AMS 14C measurement (2170 ± 38 cal yr BP) underpins the local tephrochronology and provides a reliable age of the YLL and Lake Mývatn.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Arnold, JR, Libby, WF. 1949. Age determinations by radiocarbon content: checks with samples of known ages. Science 110:678–80.Google Scholar
Ascough, PL, Cook, GT, Hastie, H, Dunbar, E, Church, MJ, Einarsson, Á, McGovern, TH, Dugmore, AJ. 2011. An Icelandic freshwater radiocarbon reservoir effect: implications for lacustrine 14C chronologies. The Holocene 21(7):1073–80.Google Scholar
Bird, MI. 2007. Radiocarbon dating. Charcoal. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier, p 2950–8.Google Scholar
Bird, MI, Turney, CSM, Fifield, LK, Jones, R, Ayliffe, LK, Palmer, A, Cresswell, R, Robertson, S. 2002. Radiocarbon analysis of the early archaeological site of Nauwalabila I, Arnhem Land Australia: implications for sample suitability and stratigraphic integrity. Quaternary Science Reviews 21 (8–9):1061–75.Google Scholar
Björck, S, Wohlfarth, B. 2004. 14C chronostratigraphic techniques in palcolimnology. In: Last, WM, Smol, BF, editors. Tracking Environmental Change Using Lake Sediments. Volume 1. Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Kluwer Academic Publishers, p 204–46.Google Scholar
Braitseva, OA, Sulerzhitsky, LD, Litasova, SN, Meleketsev, IV, Ponomareva, VV. 1993. Radiocarbon dating and tephrochronology in Kamchatka. Radiocarbon 35(3):463–76.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Buchanan-Banks, JM, Lockwood, JP, Rubin, M. 1989. Radiocarbon date for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2′ Quadrangle, Island of Hawaii. Radiocarbon 31 (2):179–86.Google Scholar
Cook, GT, van der Plicht, J. 2007. Radiocarbon dating. Conventional method. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier, p 2899–911.Google Scholar
d'Errico, F, Banks, W, Vanhaeren, M, Laroulandic, V, Langlais, M. 2011. PACEA Geo-Referenced Radiocarbon Database. PaleoAnthropology 2011:112 Google Scholar
Einarsson, Á. 1982. The palacolimnology of Lake Mývatn, northern Iceland: plant and animal microfossils in the sediment. Freshwater Biology 12:6382.Google Scholar
Einarsson, Á, Örnólfsdóttir, EB. 2004. Long-term changes in benthic Cladocera populations in Lake Mývatn, Iceland. Aquatic Ecology 38:253–62.Google Scholar
Einarsson, Á, HafliÐason, H, Óskarsson, H. 1988. Mývatn: Saga lífríkis og gjóskutímatal í SyÐriflóa [Lake Mývatn: palacolimnology and tephrochronology of the SyÐriflói basin]. Mývatn Research Station, Report no. 4. NáttúruverndarráÐ, Reykjavík, Ísland. 96 p. In Icelandic with English summary.Google Scholar
Einarsson, Á, Óskarsson, H, Haflidason, H. 1993. Stratigraphy of fossil pigments and Cladophora and its relationship with tephra deposition in Lake Mývatn. Journal of Paleolimnology 8:1526.Google Scholar
Einarsson, Á, Stefánsdóttir, G, Jóhannesson, H, Ólafsson, JS, Gíslason, GM, Wakana, I, Gudbergsson, G, Gardarsson, A. 2004. The ecology of Lake Mývatn and River Laxá: variation in space and time. Aquatic Ecology 38:317–48.CrossRefGoogle Scholar
Einarsson, S, Jóhannesson, H, Sveinbjörnsdóttir, ÁE. 1991. Age of the Kapelluhraun and Hellnahraun lava flows, Reykjanes peninsula, Southwest Iceland. Jökull 41:6180. In Icelandic with English summary.Google Scholar
Gavin, DG. 2001. Estimation of inbuilt age of soil charcoal from fire history studies. Radiocarbon 43(1):2744.CrossRefGoogle Scholar
Graf, KE. 2009. “The good, the bad, and the ugly”: evaluating the radiocarbon chronology of the middle and later Upper Paleolithic in the Enisei River valley, south-central Siberia. Journal of Archaeological Science 36(3):694707.Google Scholar
Hauptfleisch, U, Einarsson, Á, Andersen, TJ, Newton, A, Gardarsson, A. 2010. Matching thirty years of ecosystem monitoring with a high resolution microfossil record. Freshwater Biology. doi:10.1111/j.1365-2427.2010.02518.x.Google Scholar
Heinemeier, J. 2007. Prøveudtagning AMS Kulstoff-14 datering. AMS 14C Dateringslaboratoriet, Institut for Fysik og Astronomi. Aarhus Universitet. 4 p. In Danish.Google Scholar
Hjartarson, Á. 2011. The largest lavas of Iceland. NátturufræÐingurinn 81:3748. In Icelandic with English summary.Google Scholar
Jakobsson, S. 1976. Aldur Grímsneshrauna. NáttúrufræÐingurinn 46:153–62. In Icelandic.Google Scholar
Jóhannesson, H, Einarsson, S. 1988. Age of the Ögmundarhraun lava flow and the Medieval tephra layer, Reykjanes peninsula, southwest Iceland. Jökull 38:7187. In Icelandic with English summary.Google Scholar
Jóhannesson, H, Sæmundsson, K. 1998. JarÐfræÐikort af Íslandi. Berggrunnur. MælikvarÐi 1:500.000.2. útgáfa [Geological map of Iceland. Scale 1:500.000.2nd edition]. Reykjavík: The Icelandic Institute for Natural History. In Icelandic.Google Scholar
Jöhannesson, H, Sæmundsson, K. 2009. JarÐfræÐikort af Íslandi. Berggrunnur. MælikvarÐi 1:600.000. 1. útgáfa [Geological map of Iceland. Scale 1:600.000. 1 st edition], Reykjavík: The Icelandic Institute for Natural History. In Icelandic.Google Scholar
Jönsson, J. 1971. Hraun í nágrenni Reykjavíkur, 1. Leitahraun. NáttúrufræÐingurinn 41:4963. In Icelandic.Google Scholar
Jönsson, J. 1977. Reykjafellsgígir og SkarÐsmýrarhraun á HellisheiÐi. NáttúrufræÐingurinn 47:1726. In Icelandic.Google Scholar
Jönsson, J. 1983. Eldgos á sögulegum tíma á Reykjanesskaga (Volcanic eruptions in historical time at the Reykjanes peninsula). NáttúrufræÐingurinn 52:127–39. In Icelandic with English summary.Google Scholar
Jull, AJT. 2007. Radiocarbon dating. AMS method. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier, p 2911–8.Google Scholar
Kilburn, CRJ. 2000. Lava flows and flow fields. In: Sigurdsson, H, Houghton, BF, editors. Encyclopedia of Volcanoes. London: Academic Press, p 291305.Google Scholar
Kjartansson, G. 1964. 14C ages of some postglacial lavas in South Iceland. NáttúrufræÐingurinn 34:101–13. In Icelandic with English summary.Google Scholar
Kjartansson, G. 1966. Nokkrar nýjar C14-aldursákvarÐanir. NáttúrufræÐingurinn 36:126–41. In Icelandic.Google Scholar
Kjartansson, G. 1973. The age of the Búrfell lava at HafnarfjörÐur. NáttúrufræÐingurinn 42:159–83. In Icelandic with English summary.Google Scholar
Libby, WF. 1952. Radiocarbon Dating. Chicago: University of Chicago Press. 124 p.Google Scholar
Liedgren, LG, Bergman, IM, Hörnberg, G, Zackrisson, O, Hellberg, E, Östlund, L, DeLuca, TH. 2007. Radiocarbon dating of prehistoric hearths in alpine northern Sweden: problems and possibilities. Journal of Archaeological Science 34(8):1276–88.Google Scholar
Madeira, J, Monge Soares, AM, da Silveira, AB, Serralheiro, A. 1995. Radiocarbon dating recent volcanic activity on Faial Island (Azores). Radiocarbon 37(2):139–47.Google Scholar
Nelson, DE, Korteling, RG, Stott, WR. 1977. Carbon-14: direct detection at natural concentrations. Science 198(4316):507–8.Google Scholar
Okuno, M, Nakamura, T, Kobayashi, T. 1998. AMS 14C dating of historic eruptions of the Kirishima, Sakurajima and Kaimondakc volcanoes, Southern Kyushu, Japan. Radiocarbon 40(2):825–32.Google Scholar
Pettitt, PB, Davics, W, Gamble, CS, Richards, MB. 2003. Palaeolithic radiocarbon chronology: quantifying our confidence beyond two half-times. Journal of Archaeological Science 30(12):1685–93.Google Scholar
Pietikäinen, J, Kiikkilä, O, Fritze, H. 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–42.Google Scholar
Reimer, PJ, Baillic, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Sæmundsson, K. 1962. Das Alter der Nesja-lava (SW Island). Neues Jahrbuch für Geologie und Paläontologie 12:650. In German.Google Scholar
Sæmundsson, K. 1966. Zwei neue C14-Datierungen isländischer Vulkanausbrüche. Eiszeitalter und Gegenwart 17:85–6. In German.Google Scholar
Sæmundsson, K. 1991. JarÐfræÐi Kröflukerfisins (The geology of the Krafla system). In: Gardarsson, A, Einarsson, Á, editors. Náttúra Mývatns. Reykjavík: HiÐ íslenska náttúrufræÐifélag. In Icelandic, p 2495.Google Scholar
Sinton, J, Grönvold, K, Sæmundsson, K. 2005. Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochemistry, Geophysics, Geosystems 6: Q12009, doi:10.1029/2005GC001021.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW. 1993. High-precision bidecadal calibration of the radiocarbon time scale, AD 1950–500 BC and 2500–6000 BC. Radiocarbon 35(1):123.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215–30.Google Scholar
Stuiver, M, Reimer, PJ. 2005. CALIB 5.0 [WWW program and documentation]. URL: http://calib.qub.ac.uk/calib/.Google Scholar
Thorarinsson, S. 1951. Laxárgljúfur and Laxárhraun. A tephrochronological study. Geografiske Annaler Stockholm H. 1–2:189.Google Scholar
Thorarinsson, S. 1953. The crater groups in Iceland. Bulletin of Volcanology XIV:344.Google Scholar
Thorarinsson, S. 1964. Aldur öskulaga [The age of tephra layers]. NáttürufræÐingurinn 34:113–26. In Icelandic with English summary.Google Scholar
Thorarinsson, S. 1979. The postglacial history of the Mývatn area. Oikos 32:1728.Google Scholar
Tuniz, C, Bird, JR, Fink, D, Herzog, GF. 1998. Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science. Boca Raton: CRC Press. 400 p.Google Scholar
Waterbolk, TH. 1971. Working with radiocarbon dates. Proceedings of the Prehistoric Society 37:1533.Google Scholar