Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-01T02:27:09.487Z Has data issue: false hasContentIssue false

Quaternary Glaciations in the Río Mendoza Valley, Argentine Andes

Published online by Cambridge University Press:  20 January 2017

Lydia E. Espizua*
Affiliation:
Instituto Argentino de Nivologı́a y Glaciologı́a, Consejo Nacional de Investigaciones Cientificas y Técnicas, Casilla de Correo 330, 5500 Mendoza, Argentina

Abstract

In the Río Mendoza valley, five Pleistocene drifts and one Holocene drift are distinguished by multiple relative-age criteria, including surface-rock weathering, development of rock varnish, moraine morphology, soil-profile development, and stratigraphic relationships. Several absolute ages suggest a preliminary chronology. During the oldest (Uspallata) glaciation, a system of valley glaciers flowed 110 km from the Andean drainage divide and 80 km from Cerro Aconcagua to terminate at 1850 m. Drift of this ice advance is older than a widespread tephra dated by fission-track at 360,000 ± 36,000 yr. During the Punta de Vacas advance, ice terminated at 2350 m, while during the subsequent Penitentes advance, the glacier system ended at 2500 m. A travertine layer overlying Penitentes Drift has U-series age of 24,200 ± 2000 yr B.P. The distribution of Horcones Drift, which is inferred to represent the last glacial maximum, delimits an independent ice stream that flowed 22 km down Horcones valley to 2750 m. A later readvance (Almacenes) reached 3250 m. Confluencia Drift is considered to be Neoglacial in age and extends downvalley to 3300 m. The moraine sequence is compared with those studied by Caviedes (1972) along Río Aconcagua on the Chilean flank of the Andes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosetti, J. A. Del Vito, L. A., and Roig, F. A. (1986). “La vege-tación del Paso de Uspallata, Provincia de Mendoza, Argentina,” Vol. 91, pp. 141180. Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zurich.Google Scholar
Bengochea, L. E. Porter, S. C., and Schwarcz, H. P. (1987). Pleistocene glaciation across the High Andes of Chile and Argentina. In “Abstracts International Union of Quaternary Research INQUA, XIIth International Congress.” Ottawa, Canada.Google Scholar
Birkeland, P. W. (1984). “Soils and Geomorphology.” Oxford Univ. Press, New York.Google Scholar
Burke, R. M., and Birkeland, P. W. (1979). Reevaluation of multiparameter relative dating techniques and their application to the glacial sequence along the eastern escarpment of the Sierra Nevada, California. Quaternary Research 11, 2151.Google Scholar
Bustos, R. (1977). “Le massif de l’Aconcagua.” Unpublished Ph.D. dissertation, University of Bordeaux, France.Google Scholar
Caminos, R. (1979). “Cordillera Frontal. Segundo Simposio de Geolo-gía Regional Argentina,” Vol. 1, pp. 397453. C6rdoba, Argentina.Google Scholar
Caviedes, C. L. (1972). “Geomorfología del Cuartenario del valle del Aconcagua, Chile Central. Freiburger Geographische Hefte,” pp. 9153. Im Seibstverlag der Geographischen Institute der Albert-Ludwigs Universität. Freiburg I.BR.Google Scholar
Caviedes, C. L., and Paskoff, R. (1975). Quaternary glaciations in the Andes of north-central Chile. Journal of Glaciology 14, 155170.CrossRefGoogle Scholar
Colman, S. M., and Pierce, K. L. (1986). Glacial sequence near Mc-Call, Idaho: Weathering rinds, soil development, morphology, and other relative-age criteria. Quaternary Research 25, 2542.Google Scholar
Corte, A. E., and Espizua, L. E. (1981). “Inventario de glaciares de la cuenca del Río Mendoza,” pp. 362. CONICET-IANIGLA, Men-doza, Argentina.Google Scholar
D’Antoni, H. L. (1980). “Los últimos 30 mil años en el sur de Men-doza, Argentina. III. Coloquio sobre Paleobotänica y Palinología,” pp. 83102. Memorias. Instituto Nacional de Antropología e Histo-ria.Google Scholar
Dorn, R. I., and Oberlander, T. M. (1982). Rock varnish. Progress in Physical Geography 6, 317367.Google Scholar
Dorn, R. I., and Oberlander, T. M. (1981). Rock varnish origin, characteristics, and usage Zeitschrift für Geomorphologie 25, 420436.Google Scholar
Enjalbert, H. (1957). “La vallée du río Mendoza (Argentine). Essai sur l’évolution du modèle des Andes séches,” No. 267-268, pp. 1027. Bulletin Association Geographic Francais.Google Scholar
Eren̄o, C. E., and Hoffmann, J. A. (1976). “El régimen pluvial de la Cordillera Central.” Facultad de Filosofía y Letras. Universidad Na-cional de Buenos Aires. Cuaderno de Geografia. Buenos Aires 5, 136.Google Scholar
Espizua, L. E. (1986). Fluctuations of the Río del Plomo glaciers. Geografiska Annaler 68A(4), 317327.Google Scholar
Espizua, L. E. (1989a). Glaciaciones Pleistocénicas en la Quebrada de los Horcones y Río de las Cuevas, Mendoza, República Argentina. Unpubl. Doctoral Thesis, Universidad Nacional de San Juan (Argen-tina).Google Scholar
Espizua, L. E. (1989b). “Secuencia Glacial Pleistocénica en el Río Mendoza (Prov. de Mendoza, Argentina) Geocryology of the Amer-icas, UNESCO-IUGS-IGCP Project 297,” pp. 5051. First Meeting, Mendoza, Argentina.Google Scholar
Flint, R. F., and Fidalgo, F. (1964). Glacial geology of the east flank of the Argentine Andes between latitude 39°10’S and latitude 41°20’S. Geological Society of America Bulletin 75, 335352.CrossRefGoogle Scholar
Flint, R. F., and Fidalgo, F. (1969). Glacial drift in the eastern Argentine Andes between latitude 41°10’S and latitude 43°I0’S. Geological Society of America Bulletin 80, 10431052.Google Scholar
Gile, L. H. Peterson, F. F., and Grossman, R. B. (1966). Morphological and genetic sequences of carbonate accumulation in desert soil. In “Pedology, Weathering, and Geomorphological Research” (Birkeland, P. W., Ed.), p. 285. Oxford Univ. Press, New York.Google Scholar
Kaufman, D. S., and Calkin, P. E. (1989). Morphometric analysis of Pleistocene glacial deposits in the Kigluaik Mountains, northwestern Alaska U.S.A. Artic and Alpine Research 20, 273284.CrossRefGoogle Scholar
Khule, M. (1985). Spuren der hocheiszeitlichen Gletscherbedeckung in der Aconcagua-Gruppe. (32-33° S). Zbl. Geo. Paläont. Teil I, 16351646.Google Scholar
Khule, M. (1987). Subtropical mountain and highland glaciation as Ice Age triggers and the waning of the glacial periods in the pleistocene. GeoJournal 14, 393421.Google Scholar
Lliboutry, L. (1956). Nieves y glaciares de Chile. Fundamentos de glaciología: Ediciones de la Universidad de Chile, p. 471. Santiago, Chile.Google Scholar
Markgraf, V. Bradbury, i. P., and Fernandez, J. (1986). Bajada de Rahue, Provínce of Neuquén, Argentina: an interstadial deposit in northern Patagonia. Palaeogeography, Palaeoclimatology, Palaeo-ecology 56, 251258.Google Scholar
Porter, S. C. (1975). Equilibrium-line altitudes of Late Quaternary glaciers in the southern Alps, New Zealand. Quaternary Research 5, 2747.Google Scholar
Porter, S. C. (1976). Pleistocene glaciation in the southern part of the North Cascade Range, Washington. Geological Society of America Bulletin 87, 6175.Google Scholar
Porter, S. C. (1981). Pleistocene glaciation in the Southern Lake District of Chile. Quaternary Research 16, 263292.Google Scholar
Rabassa, J., and Clapperton, C. M. (1990). Quaternary glaciation of the southern Andes. Quaternary Science Reviews 9, 153174.Google Scholar
Salomon, J. N. (1969). “El alto valle del Río Mendoza.” Boletín de Es-tudios Geográfiicos. 16 (62), 150. Instituto de Geografía. Facultad de Filosofía y Letras. Universidad Nacional de Cuyo, Mendoza.Google Scholar
Schubert, C, and Clapperton, C. M. (1990). Quaternary glaciation in the northern Andes (Venezuela, Colombia and Ecuador). Quaternary Science Reviews 9, 123135.Google Scholar
Seltzer, G. O. (1990). Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes. Quaternary Science Reviews 9, 137152.Google Scholar
Suarez, J. (1983). “Rasgos del modelado glaciario en la Quebrada Benjamin Matienzo. Andes Centrales, Cordillera Principal,” 140. Mendoza, Argentina.Google Scholar
Viers, G. (1965). Obervations sur la Glaciation Quaternaire dans les Andes de Mendoza. Revue Geographic Pyrenees, (Toulouse, France) 36, 89116.Google Scholar
Yrigoyen, M. R. (1979). “Cordillera Principal. Segundo Simposio de Geología Regional Argentina,” pp. 651694. C6rdoba, Argentina.Google Scholar