Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-15T03:13:24.939Z Has data issue: false hasContentIssue false

Precisely constrained 134-ka strong monsoon event in the penultimate deglaciation by an annually laminated speleothem from the Asian monsoon domain

Published online by Cambridge University Press:  22 September 2023

Jiahui Cui
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Jingyao Zhao*
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Xiyu Dong
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Carlos Pérez-Mejías
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Jing Lu
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Ye Tian
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Jian Wang
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Liangkang Pan
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Haiwei Zhang
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Hai Cheng
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China Universal Scientific Education and Research Network (USERN), Xi'an, China
*
*Corresponding author: Jingyao Zhao; Email: <zjy1230@xjtu.edu.cn>

Abstract

The penultimate deglaciation was characterized by a sub-millennial-scale warm event in the Heinrich Stadial 11(HS11), termed the 134-ka event. However, its precise timing and structure remain poorly constrained due to the lack of high-resolution and precisely dated records. We present an oxygen isotope record of a speleothem with well-developed annual lamina from Zhangjia Cave, located on the north margin of the Sichuan Basin, characterizing Asian summer monsoon (ASM) changes in the 134-ka event, which included an increase excursion of ca. 149 years and decrease excursion of ca. 200 years, inferred from 3.3‰ δ18O variations. This event also divided the weak ASM interval-II (WMI-II), corresponding to HS11, into two stages, the WMI-IIa 132.8–134.1 ka and WMI-IIb 134.4–136.4 ka. With a comparable climatic pattern globally, the 134-ka event is essentially similar to the millennial-scale events in last glacial–deglacial period. Particularly, the observed weak-strong-weak ASM sequence (138.8–132.8 ka) is largely controlled by changes in the Atlantic Meridional Overturning Circulation (AMOC) forced by the meltwater of northern high-latitude ice sheets. Moreover, our results underpin that AMOC, rather than the global ice volume, is more critical to ASM variations during the last two deglaciations.

Type
Thematic Set: Speleothem Paleoclimate
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, S., Diz, P., Vautravers, M.J., Pike, J., Knorr, G., Hall, I.R., Broecker, W.S., 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 10971102.Google Scholar
Bock, M., Schmitt, J., Beck, J., Seth, B., Chappellaz, J., Fischer, H., 2017. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records. Proceedings of the National Academy of Sciences 114, E5778E5786.Google Scholar
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M.B., Deininger, M., 2015. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 7376.Google Scholar
Broecker, W.S., Denton, G.H., Edwards, R.L., Cheng, H., Alley, R.B., Putnam, A.E., 2010. Putting the Younger Dryas cold event into context. Quaternary Science Reviews 29, 10781081.Google Scholar
Brook, E.J., Buizert, C., 2018. Antarctic and global climate history viewed from ice cores. Nature 558, 200208.Google Scholar
Carlson, A.E., Clark, P.U., 2012. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Reviews of Geophysics 50, RG4007. https://doi.org/10.1029/2011RG000371.Google Scholar
Channell, J.E.T., Hodell, D.A., Lehman, B., 1997. Relative geomagnetic paleointensity and δ18O at ODP site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth and Planetary Science Letters 153, 103118.Google Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., Asmerom, Y., 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology 169, 1733.Google Scholar
Cheng, H., Edwards, R.L., Wang, Y., Kong, X., Ming, Y., Kelly, M.J., Wang, X., Gallup, C.D., Liu, W., 2006. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34, 217220.Google Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., Wang, X., 2009. Ice age terminations. Science 326, 248252.Google Scholar
Cheng, H., Sinha, A., Wang, X., Cruz, F.W. Jr., Edwards, R.L., 2012. The global paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics 39, 10451062.Google Scholar
Cheng, H., Lawrence Edwards, R., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., et al., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372, 8291.Google Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., et al., 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640646.Google Scholar
Cheng, H., Zhang, H., Zhao, J., Li, H., Ning, Y., Kathayat, G., 2019. Chinese stalagmite paleoclimate researches: a review and perspective. Science China Earth Sciences 62, 14891513.Google Scholar
Cheng, H., Xu, Y., Dong, X., Zhao, J., Li, H., Baker, J., Sinha, A., et al., 2021. Onset and termination of Heinrich Stadial 4 and the underlying climate dynamics. Communications Earth & Environment 2, 230. https://doi.org/10.1038/s43247-021-00304-6.Google Scholar
Cheng, H., Li, H., Sha, L., Sinha, A., Shi, Z., Yin, Q., Lu, Z., et al., 2022. Milankovitch theory and monsoon. The Innovation 3, 100338. https://doi.org/10.1016/j.xinn.2022.100338.Google Scholar
Clark, P.U., Mitrovica, J., Milne, G., Tamisiea, M., 2002. Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295, 24382441.Google Scholar
Deaney, E.L., Barker, S., van de Flierdt, T., 2017. Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change. Nature Communications 8, 14595. https://doi.org/10.1038/ncomms14595.Google Scholar
Delmotte, M., Chappellaz, J., Brook, E., Yiou, P., Barnola, J.-M., Goujon, C., Raynaud, D., Lipenkov, V., 2004. Atmospheric methane during the last four glacial–interglacial cycles: rapid changes and their link with Antarctic temperature. Journal of Geophysical Research: Atmospheres 109, D12104. https://doi.org/10.1029/2003JD004417.Google Scholar
Denniston, R.F., Asmerom, Y., Lachniet, M., Polyak, V.J., Hope, P., An, N., Rodzinyak, K., Humphreys, W.F., 2013. A last glacial maximum through Middle Holocene stalagmite record of coastal Western Australia climate. Quaternary Science Reviews 77, 101112.Google Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.Google Scholar
Dokken, T.M., Nisancioglu, K.H., Li, C., Battisti, D.S., Kissel, C., 2013. Dansgaard–Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28, 491502.Google Scholar
Domínguez-Villar, D., Baker, A., Fairchild, I.J., Edwards, R.L., 2012. A method to anchor floating chronologies in annually laminated speleothems with U–Th dates. Quaternary Geochronology 14, 5766.Google Scholar
Dorale, J.A., Edwards, R.L., Ito, E., Gonzalez, L.A., 1998, Climate and vegetation history of the Midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science 282, 18711874.Google Scholar
Duan, W., Cheng, H., Tan, M., Li, X., Edwards, R.L., 2019. Timing and structure of Termination II in north China constrained by a precisely dated stalagmite record. Earth and Planetary Science Letters 512, 17.Google Scholar
Edwards, R.L., Chen, J., Ku, T.-L., Wasserburg, G., 1987. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science 236, 15471553.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., 2003, Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.Google Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Ramsey, C.B., Satow, C., Roberts, A.P., 2012. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744747.Google Scholar
Grant, K., Rohling, E., Ramsey, C.B., Cheng, H., Edwards, R., Florindo, F., Heslop, D., et al., 2014. Sea-level variability over five glacial cycles. Nature Communications 5, 5076. https://doi.org/10.1038/ncomms6076.Google Scholar
Hurrell, J.W., Holland, M.M., Gent, P.R., Ghan, S., Kay, J.E., Kushner, P.J., Lamarque, J.-F., et al., 2013. The community earth system model: a framework for collaborative research. Bulletin of the American Meteorological Society 94, 13391360.Google Scholar
IPCC (The Intergovernmental Panel on Climate Change) (Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. [Eds.]), 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, New York, 1535 pp.Google Scholar
Irvalı, N., Ninnemann, U.S., Kleiven, H.K.F., Galaasen, E.V., Morley, A., Rosenthal, Y., 2016. Evidence for regional cooling, frontal advances, and East Greenland Ice Sheet changes during the demise of the last interglacial. Quaternary Science Reviews 150, 184199.Google Scholar
Jacobel, A.W., McManus, J.F., Anderson, R.F., Winckler, G., 2016. Large deglacial shifts of the Pacific intertropical convergence zone. Nature Communications 7, 10449. https://doi.org/10.1038/ncomms10449.Google Scholar
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 18891906.Google Scholar
Jiménez-Amat, P., Zahn, R., 2015. Offset timing of climate oscillations during the last two glacial–interglacial transitions connected with large-scale freshwater perturbation. Paleoceanography 30, 768788.Google Scholar
Kelly, M.J., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., An, Z., 2006. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeography, Palaeoclimatology, Palaeoecology 236, 2038.Google Scholar
Li, Y., Rao, Z., Xu, Q., Zhang, S., Liu, X., Wang, Z., Cheng, H., Edwards, R.L., Chen, F., 2020. Inter-relationship and environmental significance of stalagmite δ13C and δ18O records from Zhenzhu Cave, north China, over the last 130 ka. Earth and Planetary Science Letters 536, 116149. https://doi.org/10.1016/j.epsl.2020.116149.Google Scholar
Liang, Y., Zhao, K., Edwards, R.L., Wang, Y., Shao, Q., Zhang, Z., Zhao, B., Wang, Q., Cheng, H., Kong, X., 2020. East Asian monsoon changes early in the last deglaciation and insights into the interpretation of oxygen isotope changes in the Chinese stalagmite record. Quaternary Science Reviews 250, 106699. https://doi.org/10.1016/j.quascirev.2020.106699.Google Scholar
Liu, Z., Wen, X., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., et al., 2014. Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews 83, 115128.Google Scholar
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T.F., Chappellaz, J., 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383386.Google Scholar
Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., et al., 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 1341513419.Google Scholar
Marino, G., Rohling, E.J., Rodriguez-Sanz, L., Grant, K.M., Heslop, D., Roberts, A.P., Stanford, J.D., Yu, J., 2015. Bipolar seesaw control on last interglacial sea level. Nature 522, 197201.Google Scholar
Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., Stocker, T.F., 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502507.Google Scholar
Martrat, B., Jimenez-Amat, P., Zahn, R., Grimalt, J.O., 2014. Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quaternary Science Reviews 99, 122134.Google Scholar
Max, L., Nürnberg, D., Chiessi, C.M., Lenz, M.M., Mulitza, S., 2022. Subsurface ocean warming preceded Heinrich Events. Nature Communications 13, 4217. https://doi.org/10.1038/s41467-022-31754-x.Google Scholar
Menviel, L.C., Skinner, L.C., Tarasov, L., Tzedakis, P.C., 2020. An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nature Reviews Earth & Environment 1, 677693.Google Scholar
Mokeddem, Z., McManus, J.F., Oppo, D.W., 2014. Oceanographic dynamics and the end of the last interglacial in the subpolar North Atlantic. Proceedings of the National Academy of Sciences 111, 1126311268.Google Scholar
Ng, H.C., Robinson, L.F., McManus, J.F., Mohamed, K.J., Jacobel, A.W., Ivanovic, R.F., Gregoire, L.J., Chen, T., 2018. Coherent deglacial changes in western Atlantic Ocean circulation. Nature Communications 9, 2947. https://doi.org/10.1038/s41467-018-05312-3.Google Scholar
Pausata, F.S., Battisti, D.S., Nisancioglu, K.H., Bitz, C.M., 2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience 4, 474480.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al., 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Rasmussen, T.L., Thomsen, E., 2004. The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 101116.Google Scholar
Schmidely, L., Nehrbass-Ahles, C., Schmitt, J., Han, J., Silva, L., Shin, J., Joos, F., Chappellaz, J., Fischer, H., Stocker, T.F., 2021. CH4 and N2O fluctuations during the penultimate deglaciation. Climate of the Past 17, 16271643.Google Scholar
Scholz, D., Hoffmann, D.L., 2011. StalAge—an algorithm designed for construction of speleothem age models. Quaternary Geochronology 6, 369382.Google Scholar
Scussolini, P., Marino, G., Brummer, G.-J.A., Peeters, F.J., 2015. Saline Indian Ocean waters invaded the South Atlantic thermocline during glacial termination II. Geology 43, 139142.Google Scholar
Skinner, L., Shackleton, N., 2006. Deconstructing terminations I and II: revisiting the glacioeustatic paradigm based on deep-water temperature estimates. Quaternary Science Reviews 25, 33123321.Google Scholar
Stocker, T.F., Johnsen, S.J., 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087. https://doi.org/10.1029/2003PA000920.Google Scholar
Stoll, H.M., Cacho, I., Gasson, E., Sliwinski, J., Kost, O., Moreno, A., Iglesias, M., et al., 2022. Rapid northern hemisphere ice sheet melting during the penultimate deglaciation. Nature Communications 13, 3819. https://doi.org/10.1038/s41467-022-31619-3.Google Scholar
Tan, M., 2014. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dynamics 42, 10671077.Google Scholar
Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21. PA2005. https://doi.org/10.1029/2005PA001154.Google Scholar
Toucanne, S., Soulet, G., Vázquez Riveiros, N., Boswell, S.M., Dennielou, B., Waelbroeck, C., Bayon, G., et al., 2021. The North Atlantic glacial eastern boundary current as a key driver for ice-sheet–AMOC interactions and climate instability. Paleoceanography and Paleoclimatology 36, e2020PA004068. https://doi.org/10.1029/2020PA004068.Google Scholar
Tzedakis, P.C., Drysdale, R.N., Margari, V., Skinner, L.C., Menviel, L., Rhodes, R.H., Taschetto, A.S., et al., 2018. Enhanced climate instability in the North Atlantic and southern Europe during the last interglacial. Nature Communications 9, 4235. https://doi.org/10.1038/s41467-018-06683-3.Google Scholar
Wang, Q., Wang, Y., Shao, Q., Liang, Y., Zhang, Z., Kong, X., 2018. Millennial-scale Asian monsoon variability during the late Marine Isotope Stage 6 from Hulu Cave, China. Quaternary Research 90, 394405.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., An, Z., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 10901093.Google Scholar
Weber, M.E., Clark, P.U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone, R., Zhang, X., et al., 2014. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510, 134138Google Scholar
Xue, G., Cai, Y., Ma, L., Cheng, X., Cheng, H., Edwards, R.L., Li, D., Tan, L., 2019. A new speleothem record of the penultimate deglacial: insights into spatial variability and centennial-scale instabilities of East Asian monsoon. Quaternary Science Reviews 210, 113124.Google Scholar
Yoshimura, K., Kanamitsu, M., Noone, D., Oki, T., 2008. Historical isotope simulation using Reanalysis atmospheric data. Journal of Geophysical Research 113, D19108. https://doi.org/10.1029/2008JD010074.Google Scholar
Zhang, H., Cheng, H., Spötl, C., Cai, Y., Sinha, A., Tan, L., Yi, L., et al., 2018. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO. Scientific Reports 8, 12344. https://doi.org/10.1038/s41598-018-30112-6.Google Scholar
Zhao, J., Cheng, H., 2017. Applications of laser scanning confocal microscope to paleoclimate research: characterizing and counting laminae. Quaternary Sciences 37, 14721474. [In Chinese]Google Scholar
Zhao, J., Cheng, H., Yang, Y., Tan, L., Spötl, C., Ning, Y., Zhang, H., et al., 2019. Reconstructing the western boundary variability of the Western Pacific Subtropical High over the past 200 years via Chinese cave oxygen isotope records. Climate Dynamics 52, 37413757.Google Scholar
Zhao, J., Cheng, H., Cao, J., Sinha, A., Dong, X., Pan, L., Pérez-Mejías, C., et al., 2023. Orchestrated decline of Asian summer monsoon and Atlantic meridional overturning circulation in global warming period. The Innovation Geoscience 1, 100011. https://www.doi.org/10.59717/j.xinn-geo.2023.100011.Google Scholar
Supplementary material: File

Cui et al. supplementary material

Cui et al. supplementary material
Download Cui et al. supplementary material(File)
File 1.9 MB