Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T14:48:44.606Z Has data issue: false hasContentIssue false

Biophysics of flagellar motility

Published online by Cambridge University Press:  17 March 2009

Jacob J. Blum
Affiliation:
Department of Physiology, Duke University Medical Center, Durham
Michael Hines
Affiliation:
Department of Physiology, Duke University Medical Center, Durham

Extract

One feature characterizing the transition from prokaryote to eukaryote is the ‘sudden’ appearance of centrioles and their highly structured products, the typical eukaryotic flagella and cilia. These mechanochemical systems appear as fully developed machines, containing some 200 diffierent proteins (Luck et al. 1978) arranged in a remarkably complex organization which has undergone little modification since the advent of the first eukaryotic cells. It is now well established (see, for example, Satir, 1974) that ciliary and flagellar motility is based on a sliding filament mechanism that superficially resembles the far more extensively studied sliding filament system of striated skeletal muscle.The flagellar system, however, appears to be much more complex than the muscle system, because it does not ‘merely’ shorten and generate force, but develops propagating waves and exerts its effects via hydrodynamic interactions with a viscous medium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

9. REFERENCES

Amos, L. (1978). Changes in tubulin surface lattice during flagellar bending. Abstracts, Sixth Int. Biophys. Cong. p. 380.Google Scholar
Amos, L. A., Linck, R. W., & Klug, A. (1976). Molecular structure of flagellar microtubules. In Cell Motility, vol. 3 (ed. Goldman, R., Pollard, T. D. and Rosenbaum, J.). Cold Spring Harbor Conferences on Cell Proliferation.Google Scholar
Anderson, R. G. W. & Hein, C. E. (1977). Distribution of anionic sites on the oviduct ciliary membrane. J. Cell Biol. 72, 482492.CrossRefGoogle ScholarPubMed
Baba, S. A. (1972). Flexural rigidity and elastic constant of cilia. J. exp. Biol. 56, 459467.CrossRefGoogle ScholarPubMed
Baba, S. (1978). OsO4-vapour fixation of flagellar waves in sea-urchin sperm. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic motility’, Hakone, p. 15.Google Scholar
Baccetti, B. & Dallai, R. (1976). The spermatozoon of Arthropoda. XXVII. Uncommon axoneme patterns in different species of the Cecidomyid flies. J. Ultrastruct. Res. 55, 5069.CrossRefGoogle ScholarPubMed
Baccetti, B. & Dallai, R. (1978). The spermatozoon of Arthropoda. XXX. The multiflagellate spermatozoon in the termite Mastotermes darivincensis. J. Cell Biol. 76, 569576.CrossRefGoogle Scholar
Baccetti, B., Dallai, R. & Ginusti, F. (1969 a). The spermatozoon of Arthropoda. VI. Ephemeroptera. J. Ultrastruct. Res. 29, 343349.CrossRefGoogle ScholarPubMed
Baccetti, B., Dallai, R. & Rosati, F. (1969 b). The spermatozoon of Arthropoda. IV. Corrodentia, Mallophaga, and Thysanoptera. J. Microscopie 8, 249262.Google Scholar
Baccetti, B., Dallai, R. & Rosati, F. (1970). The spermatozoon of Arthropoda. VIII. The 9+3 flagellum of spider sperm cells. J. Cell Biol. 44, 681682.CrossRefGoogle Scholar
Baccetti, B., Dallai, R. & Fratello, B. (1973). The spermatozoon of Arthropoda. XXII. The 12+0, 14+0, or aflagellate sperm of Protura. J. Cell Sci. 13, 321335.CrossRefGoogle ScholarPubMed
Baccetti, B., Burrini, A. G., Dallai, R. & Pallini, V. (1979). The dynein electrophoretic bands naturally lacking the inner or the outer arm. J. Cell Biol. 80, 334340.CrossRefGoogle ScholarPubMed
Barclay, R., & Yount, R. G. (1972). Evidence for myosin-like intermediates in the hydrolysis of adenosine triphosphate by sperm tail flagella. J. biol. Chem. 247, 40984100.CrossRefGoogle ScholarPubMed
Baugh, L. C., Satir, P., & Satir, B. (1976). A ciliary membrane Ca++ ATPase, a correlation of structure and function. J. Cell Biol. 70, 66 a.Google Scholar
Bergstrom, B. H. & Henley, C. (1973). Flagellar necklaces: Freeze-etch observations. J. Ultrastruct. Res. 42, 551553.CrossRefGoogle ScholarPubMed
Besson, M., Fay, R. B. & Witman, G. B. (1978). Calcium control of wave symmetry in isolated reactivated axonemes of Chlamydomonas. J. Cell Biol. 79, 306a.Google Scholar
Blake, J. (1972). A model for the micro-structure in ciliated organisms. J. Fluid Mech. 55, 123.CrossRefGoogle Scholar
Blake, J. R. & Sleigh, M. A. (1974). Mechanics of ciliary locomotion. Biol.Rev. 49, 85125.CrossRefGoogle ScholarPubMed
Blum, J. J. (1973). ATPase activity of Tetrahymena cilia before and after extraction of dynein. Archs Biochem. Biophys. 156, 310320.CrossRefGoogle ScholarPubMed
Blum, J. J. (1974). Dynein and biochemistry of ciliary motility. PAABS Rev. 3, 477482.Google Scholar
Blum, J. J. & Felauer, E. (1959). Effect of dinitrophenol on the interaction between myosin and nucleotides. Archs Biochem. Biophys. 81, 285299.CrossRefGoogle ScholarPubMed
Blum, J. J. & Hayes, A. (1974 a). On the role of sulfhydryl groups in the ATPase activity and pellet height response of Tetrahymena cilia. Archs Biochem. Biophys. 161, 239247.CrossRefGoogle Scholar
Blum, J. J. & Hayes, A. (1974 b). Effect of N-ethylmaleimide and of heat treatment of binding of dynein to ethylenediaminetetraacetic acid extracted axonemes. Biochemistry, N.Y. 13, 42904298.CrossRefGoogle ScholarPubMed
Blum, J. J. & Hayes, A. (1976). Some changes in the properties of dynein ATPase in situ and after extraction following heat treatment of cilia. J. Supramol. Struct. 5, 1525.CrossRefGoogle ScholarPubMed
Blum, J. J. & Hayes, A. (1977 a). A comparison of the effects of gentle heating, acetone, and the sulfhydryl reagent bis(4-fluoro-3-nitrophenyl) sulfone on the ATP ase activity and pellet height response to Tetrahymena cilia. J. Supramol. Struct. 6, 155167.CrossRefGoogle Scholar
Blum, J. J. & Hayes, A. (1977 b). Effect of calcium on the pellet height response of Tetrahymena cilia. J. Supramol. Struct. 7, 205211.CrossRefGoogle ScholarPubMed
Blum, J. J. & Hayes, A. (1978). Effects of sulfhydryl reagents on the ATPase activity of solubilized 14S and 30S dyneins and on whole ciliary axonemes as a function of pH. J. Supramol. Struct. 8, 153171.CrossRefGoogle Scholar
Blum, J. J. & Hayes, A. (1979). The effect of dithiothreitol and of β-mercaptoethanol on the reaction of bis(4-fluoro-3-nitrophenyl)sulfone with ciliary dyneins. J. Supramol. Struct. (Submitted.)Google Scholar
Blum, J. J., Hayes, A., Whisnant, C. C. & Rosen, G. (1977). Effect of spin-labeled maleimide on 14S and 30S dyneins in solution and on demembranated ciliary axonemes. Biochemistry, N.Y. 16, 19371943.CrossRefGoogle ScholarPubMed
Blum, J. J. & Lubliner, J. (1973). Biophysics of flagellar motility. Annual Rev. Biophys. Bioeng. 2, 181219.CrossRefGoogle ScholarPubMed
Brehm, P. & Eckert, R. (1978). Calcium entry leads to inactivation of calcium channel in Paramecium. Science, N.Y. 202, 12031206.CrossRefGoogle ScholarPubMed
Breland, O. P., Gassner, G., Riess, R. W. & Biesele, J. J. (1966). Certain aspects of the centriole adjunct, spermiogenesis, and the mature sperm of insects. Can. J. Genet. Cytol. 8, 759773.CrossRefGoogle Scholar
Brennen, C. & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. A. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
Brokaw, C. J. (1966). Effects of increased viscosity on the movements of some invertebrate spermatozoa. J. exp. Biol. 45, 113139.CrossRefGoogle ScholarPubMed
Brokaw, C. J. (1970). Bending moments in free-swimming flagella. J. exp. Biol. 53, 445464.CrossRefGoogle ScholarPubMed
Brokaw, C. J. (1971). Bend propagation by a sliding filament model for flagella. J. exp. Biol. 55, 289304.CrossRefGoogle ScholarPubMed
Brokaw, C. J. (1972 a). Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament mode. Biophys. J. 12, 564586.CrossRefGoogle Scholar
Brokaw, C. J. (1972 b). Computer simulation of flagellar movement. II. Influence of external viscosity on movement of the sliding filament model. J. Mechanochem. & Cell Motility 1, 203212.Google Scholar
Brokaw, C. J. (1974). Calcium and flagellar response during the chemotaxis of bracken spermatozoids. J. Cell. comp. Physiol. 83, 151158.CrossRefGoogle ScholarPubMed
Brokaw, C. J. (1975 a). Effects of viscosity and ATP concentration on the movement of reactivated sea urchin sperm flagella. J. exp. Biol. 62, 701719.CrossRefGoogle ScholarPubMed
Brokaw, C. J. (1975 b). Cross bridge behavior in a sliding filament model for flagella. In Molecules and Cell Movement (ed. Inoue, S. and Stephens, R. E.), pp. 165179. N.Y.: Raven Press.Google Scholar
Brokaw, C. J. (1975 c). Moleuclar mechanism for oscillation in flagella and muscle. Proc. natn. Acad. Sci. U.S.A. 72, 31023106.CrossRefGoogle Scholar
Brokaw, C. J. (1976). Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Biophys. J. 16, 10291041.CrossRefGoogle ScholarPubMed
Brokaw, C. J. (1977). CO2-inhibition of the amplitude of bending of tritondemembranated sea urchin sperm flagella. J. exp. Biol. 71, 229240.CrossRefGoogle Scholar
Brokaw, C. J. (1978 a). Control of microtubular sliding in sea urchin sperm flagella by calcium and the mechanism of flagellar oscillation. Abstracts, U.S.—Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 18.Google Scholar
Brokaw, C. J. (1978 b). Flagellar oscillation and bilateral arrest in Ciona spermatozoa. Abstracts, 6th Int. Cong. Biophys., Kyoto, p. 313.Google Scholar
Brokaw, C. J. & Benedict, B. (1968 a). Mechanochemical coupling in flagella. I. Movement-dependent dephosphorylation of ATP by glycerinated spermatozoa. Archs Biochem. Biophys. 125, 770778.CrossRefGoogle ScholarPubMed
Brokaw, C. J. & Benedict, B. (1968 b). Mechanochemical coupling in flagella. II. Effects of viscosity and thiourea on metabolism and motility of Ciona spermatozoa. J. gen. Physiol. 52, 283299.CrossRefGoogle ScholarPubMed
Brokaw, C. J. & Benedict, B. (1971). Mechanochemical coupling in flagella. III. Effects of some uncoupling agents on properties of the flagellar ATPase. Archs Biochem. Biophys. 142, 91100.CrossRefGoogle Scholar
Brokaw, C. J. & Gibbons, I. R. (1973). Localized activation of bending in proximal, medial, and distal regions of sea-urchin sperm flagella. J. Cell Sci. 13, 110.CrossRefGoogle ScholarPubMed
Brokaw, C. J. & Gibbons, I. R. (1975). Mechanisms of movement in flagella and cilia. In Swimming and Flying in Nature (ed. Wu, T. Y., Brokaw, C. J. and Brennen, C.), pp. 89126. Plenum.Google Scholar
Brokaw, C. J., Josslin, R. & Bobrow, L. (1974). Calcium regulation of flagellar beat symmetry in reactivated sea urchin sperm. Biochem. biophys. Res. Commun. 58, 795800.CrossRefGoogle Scholar
Brokaw, C. J. & Rintala, D. R. (1975). Computer simulation of flagellar movement. III. Models incorporating cross bridge kinetics. J. Mechanochem. & Cell Motility 3, 7786.Google ScholarPubMed
Brokaw, C. J. & Rintala, D. (1977). Computer simulation of flagellar movement. V. Oscillation of cross-bridge models with an ATP-concentration-dependent rate function. J. Mechanochem. & Cell Motility 4, 205232.Google ScholarPubMed
Brokaw, C. J. & Simonick, T. F. (1976). CO2 regulation of the amplitude of flagellar bending. In Cell Motility (ed. Goldman, R., Pollard, T. and Rosenbaum, T.), pp. 933940. Cold Spring Harbor Laboratory, New York.Google Scholar
Brokaw, C. J. & Simonick, T. F. (1977 a). Mechanochemical coupling in flagella. V. Effects of viscosity on movement and ATP-dephosphorylation of triton-demembranated sea-urchin spermatozoa. J. Cell Sci. 23, 227241.CrossRefGoogle ScholarPubMed
Brokaw, C. J. & Simonick, T. F. (1977 b). Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin. J. Cell Biol. 75, 650665.CrossRefGoogle ScholarPubMed
Browning, J. L. & Nelson, D. L. (1976). Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca++ fluxes across the resting and excited membrane. Biochim. biophys. Acta 448, 338351.CrossRefGoogle Scholar
Byrne, B. J. & Byrne, B. C. (1978 a). An ultrastructural correlate of the membrane mutant ‘Paranoiae’ in Paramecium. Science, N.Y. 199, 10911093.CrossRefGoogle ScholarPubMed
Byrne, B. J. & Byrne, B. C. 1978 b). Behavior and the excitable membrane in Paramecium. CRC Critical Rev. Microbiol., 09 pp. 53108.Google Scholar
Cantley, L. C., Cantley, L. G. & Josephson, L. (1978). A characterization of vanadate interactions with the (Na, K)-ATPase. Mechanistic and regulatory implications. J. biol. Chem. 253, 73617368.CrossRefGoogle ScholarPubMed
Chasey, D. (1972). Further observations on the ultrastructure of cilia from Tetrahymena pyriformis. Expl Cell Res. 74, 471479.CrossRefGoogle ScholarPubMed
Chen, L. L. & Haines, T. H. (1976). The flagellar membranes of Ochromonas danica. Isolation and electrophoretic analysis of the flagellar membrane, axonemes, and mastigonemes. J. biol. Chem. 251, 18281834.CrossRefGoogle ScholarPubMed
Chen, L. L., Pousada, M. & Haines, T. H. (1976). The flageliar membrane of Ochromonas danica. Lipid composition. J. biol. Chem. 251, 18351842.CrossRefGoogle ScholarPubMed
Childress, S. (1977). Mechanics of Swimming and Flying. Courant Institute of Mathematical Science, New York University.Google Scholar
Cosson, M. P. & Gibbons, I. R. (1978). Properties of sea urchin sperm flagella in which the bending waves have been preserved by treatment with mono- and bi-functional maleimide derivatives. J. Cell Biol. 79, 286a.Google Scholar
Costello, D. P. (1973 a). A new theory of the mechanics of ciliary and flagellar motility. I. Supporting observations. Biol. Bull. mar. biol. lab., Woods Hole 145, 279291.CrossRefGoogle ScholarPubMed
Costello, D. P. (1973 b). A new theory on the mechanics of ciliary and flagellar motility. II. Theoretical considerations. Biol. Bull. mar. biol. Lab., Woods Hole 145, 292309.CrossRefGoogle ScholarPubMed
Costello, D. P., Henley, C. & Ault, C. R. (1969). Microtubules in spermatozoa of Childia (Turbellaria, Acoela) revealed by negative staining. Science, N.Y. 163, 678679.CrossRefGoogle ScholarPubMed
DeLa, Torre J. G. & Bloomfield, V. A. (1977). Hydrodynamic theory of swimming of flagellated microorganisms. Biophys. J. 20, 4967.Google Scholar
Doughty, M. J. (1978 a). Ciliary Ca++-ATPase from the excitable membrane of Paramecium. Some properties and purification by affinity chromatography. Comp. Biochem. Physiol. 60 B, 339345.Google Scholar
Doughty, M. J. (1978 b). Control of ciliary activity in Paramecium. I. Modification of K+-induced ciliary reversal by temperature and Ruthenium Red. Comp. Biochem. Physiol. 61 C, 369373.Google ScholarPubMed
Douglas, G. J. (1975). Sliding filaments in sperm flagella. J. theor. Biol. 53, 247252.CrossRefGoogle ScholarPubMed
Douglas, G. J. & Holwill, M. E. J. (1972). Behavior of flagella isolated from Crithidia oncopelti. J. Mechanochem. Cell Motility 1, 213223.Google ScholarPubMed
Dunlap, K. (1977). Localization of Ca++ channels in Paramecium caudatum. J. Physiol. 271, 119133.CrossRefGoogle ScholarPubMed
Dute, R. & Kung, C. (1978). Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J. Cell Biol. 78, 451464.CrossRefGoogle ScholarPubMed
Eisenberg, E. & Hill, T. L. (1978). A cross-bridge model of muscle contraction. Prog. Biophys. & molec. Biol. 33, 5582.CrossRefGoogle ScholarPubMed
Fukushima, Y. & Post, R. L. (1978). Binding of divalent cation to phosphoenzyme of sodium- and potassium-transport adenosine triphosphatase. J. biol. Chem. 253, 68536862.CrossRefGoogle ScholarPubMed
Gibbons, B. (1978). Potent inhibition of dynein ATPase and of the motility of cilia and sperm flagella by vanadate. Transient waveforms during intermittent swimming in live sea urchin sperm. Abstracts, U.S.—Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 14.Google Scholar
Gibbons, B. H. & Gibbons, I. R. (1972). Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J. Cell Biol. 54, 7597.CrossRefGoogle ScholarPubMed
Gibbons, B. H. & Gibbons, I. R. (1973). The effect of partial extraction of dynein arms on the movement of reactivated sea urchin sperm. J. Cell Sci. 13, 337357.CrossRefGoogle ScholarPubMed
Gibbons, B. H. & Gibbons, I. R. (1974). Properties of flagellar ‘rigor waves’ formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J. Cell Biol. 63, 970985.CrossRefGoogle ScholarPubMed
Gibbons, B. H. & Gibbons, I. R. (1978). Formation of flagellar rigor waves by abrupt removal of Mg++ from actively swimming sea urchin sperm, and the lack of inhibition by vanadate of the relaxation of rigor waves by MgATP. J. Cell Biol. 79, 285 a.Google Scholar
Gibbons, B. H. & Gibbons, I. R. (1979). Relationship between the latent adenosine triphosphatase state of Dynein I and its ability to recombine functionally with KC1-extracted sea urchin sperm flagella. J. biol. Chem. 254, 197201.CrossRefGoogle Scholar
Gibbons, I. R. (1963). Studies on the protein components of cilia from Tetrahymena pyriformis. Proc. natn. Acad. Sci. U.S.A. 50, 10021010.CrossRefGoogle ScholarPubMed
Gibbons, I. R. (1965 a). Chemical dissection of cilia. Archs Biol. 76, 317352.Google ScholarPubMed
Gibbons, L R. (1965 b). An effect of adenosine triphosphate on the light scattered by suspensions of cilia. J. Cell Biol. 26, 707712.CrossRefGoogle ScholarPubMed
Gibbons, I. R. (1966). Studies on the adenosine triphosphatase activity of 14S and 30S dynein from cilia of Tetrahymena. J. biol. Chem. 241, 55905596.CrossRefGoogle Scholar
Gibbons, I. R. (1975). The molecular basis of flagellar motility in sea urchin spermatozoa. In Molecular and Cell Movement (ed. Inoue, S. and Stephens, R. E.), pp. 207231. New York: Raven.Google Scholar
Gibbons, I. R. (1978). Structure and function of dynein i in sea urchin sperm flagella. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 22.Google Scholar
Gibbons, I. R. & Fronk, E. (1972). Some properties of bound and soluble dynein from sea urchin sperm flagella. J. Cell Biol. 54, 365381.CrossRefGoogle ScholarPubMed
Gibbons, I. R. & Fronk, E. (1979). A latent adenosine triphosphatase form of Dynein i from sea urchin sperm flagella. J. biol. Chem. 254, 187196.CrossRefGoogle ScholarPubMed
Gibbons, I. R. & Rowe, A. J. (1965). Dynein: A protein with adenosine triphosphatase activity from cilia. Science, N.Y. 149, 424425.CrossRefGoogle ScholarPubMed
Gibbons, I. R., Fronk, E., Gibbons, N. H. & Ogawa, K. (1976). Multiple forms of dynein in sea urchin sperm flagella. In Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation, 3, 915932.Google Scholar
Gibbons, I. R., Cosson, M. P., Evans, J. A., Gibbons, B. H., Houck, B., Martinson, K. H., Sale, W. S. & Tang, W. Y. (1978). Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc. natn. Acad. Sci. U.S.A. 75, 22202224.CrossRefGoogle ScholarPubMed
Gilula, N. B. & Satir, P. (1972). The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494509.CrossRefGoogle ScholarPubMed
Goldstein, S. F. (1976). Form of developing bends in reactivated sperm flagella. J. exp. Biol. 64, 173184.CrossRefGoogle ScholarPubMed
Goldstein, S. F. (1977). Asymmetric wave forms in echinoderm sperm flagella. J. exp. Biol. 71, 157170.CrossRefGoogle Scholar
Goldstein, S. F. (1978). Starting transients in sea urchin sperm flagella. J. Cell Biol. 80, 6168.CrossRefGoogle Scholar
Goldstein, S. F., Besse, C. & Schrevel, J. (1978). Structure and physiology of a ‘6+0’ flagellum. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 21.Google Scholar
Goldstein, S. F., Holwill, M. E. J. & Silvester, N. R. (1970). The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti. J. exp. Biol. 53, 410419.CrossRefGoogle ScholarPubMed
Hata, H., Yano, Y., Mohri, T., Mohri, H. & Miki-Nomoura, T. (1978).ATP-driven tubule extrusion from axonemes without outer dynein arms of sea urchin sperm flagella. Abstracts, 6th Int. Biophys. Cong., Kyoto, p. 313.Google Scholar
Hauser, D. C. R., Petrylak, D., Singer, G., & Levandowsky, M. (1978). Calcium-dependent sensory-motor response of a marine dinoflagellate to CO2. Nature, Lond. 273, 230231.CrossRefGoogle Scholar
Hayashi, M. (1974). Kinetic analysis of axoneme and dynein ATPase from sea urchin sperm. Archs Biochem. Biophys. 165, 288296.CrossRefGoogle ScholarPubMed
Hayashi, M. & Higashi-Fujime, S. (1972). Binding and adenosine triphos-phatase of flagellar proteins from sea urchin sperm. Biochemistry, N.Y. 11, 29772982.CrossRefGoogle ScholarPubMed
Henley, C. (1970). Changes in microtubules of cilia and flagella following negative staining with phosphotungstic acid. Biol. Bull. mar. biol. lab., Woods Hole 139, 265276.CrossRefGoogle ScholarPubMed
Henley, C., Costello, D. P., Thomas, M. B. & Newton, W. D. (1969).The 9+1 pattern of microtubules in spermatozoa of Mesostoma (Platyhelminthes, Turbellaria). Proc. natn. Acad. Sci. U.S.A. 64, 849856.CrossRefGoogle Scholar
Hill, T. (1974). Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. & molec. Biol. 28, 267340.CrossRefGoogle ScholarPubMed
Hines, M. & Blum, J. J. (1978). Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Biophys. J. 23, 4157.CrossRefGoogle ScholarPubMed
Hines, M. & Blum, J. J. (1979) Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Biophys. J. 25 (in the Press).CrossRefGoogle ScholarPubMed
Hiramoto, Y. & Baba, S. A. (1978). A quantitative analysis of flagellar movement in echinoderm spermatozoa. J. exp. Biol. 76, 85104.CrossRefGoogle Scholar
Holwill, M. E. J. (1965). The motion of Strigomonas oncopelti. J. exp. Biol. 42, 125137.CrossRefGoogle Scholar
Holwill, M. E. J. (1969). Kinetic studies of the flagellar movement of sea urchin spermatozoa. J. exp. Biol. 50, 203222.CrossRefGoogle ScholarPubMed
Holwill, M. E. J. & McGregor, J. L. (1974). Micromanipulation of the flagellum of Crithidia oncopelti. I. Mechanical effects. J. exp. Biol. 60, 437444.CrossRefGoogle ScholarPubMed
Holwill, M. E. J. & McGregor, J. L. (1976). Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti. J. exp. Biol. 65, 222242.CrossRefGoogle ScholarPubMed
Hood, R. D., Watson, O. F., Deason, T. R. & Benton, C. L. B. Jr, (1972). Ultrastructure of scorpion spermatozoa with atypical axonemes. Cytobios 5, 167177.Google ScholarPubMed
Hoshino, M. (1975). Dissociation of Tetrahymena 30S dynein into 14S subunit by sonication. Biochim. biophys. Acta 403, 544553.CrossRefGoogle Scholar
Hotani, H. (1978). Visualization of a transformation process in bacterial flagellar filaments in alcohol. Abstracts, 6th Int. Biophys. Congress, Kyoto, p. 241.Google Scholar
Hyams, J. S. & Borisy, G. G. (1978). Isolated flagellar apparatus of Chlamydomonas: Characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J. Cell Sci. 33, 235354.CrossRefGoogle ScholarPubMed
Hyams, J. & Chasey, D. (1974). Aspects of the flagellar apparatus and associated microtubules in a marine alga. Expl Cell Res. 84, 381387.CrossRefGoogle Scholar
Huang, B., Piperno, G. & Luck, D. J. L. (1978). Flagellar mutants of Chlamydomonas defective for dynein arms. J. Cell Biol. 79, 286a.Google Scholar
Ito, S. (1966). Movement and structure of louse spermatozoa. J. Cell Biol. 31, 128 A.Google Scholar
Johnson, R. E. & Brokaw, C. J. (1979). Flagellar hydrodynamics: A comparison between resistive force theory and slender body theory. Biophys. J. 25, 113128.CrossRefGoogle ScholarPubMed
Kamiya, R., & Asakura, S. (1976). Helical transformations of Salmonella flagella in vitro. J. molec. Biol. 106, 167186.CrossRefGoogle ScholarPubMed
Keller, S. R. (1977). Mechanics of flagellar motion with an application to a conical spiral flagellate. J. theor. Biol. 68, 7394.CrossRefGoogle ScholarPubMed
Kimura, I. (1977). Ciliary dynein from sea urchin embryos. J. Biochem. 81, 715720.CrossRefGoogle ScholarPubMed
Kincaid, H. L. Jr, Gibbons, B. H. & Gibbons, I. R. (1973). The salt-extractable fraction of dynein from sea urchin sperm flagella: An analysis by gel electrophoresis and by adenosine triphosphatase activity. J. Supramol. Struct. 1, 461470.CrossRefGoogle ScholarPubMed
Kobayashi, T., Martensen, T., Nath, J. & Flavin, M. (1978). Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem. biophys. Res. Commun. 81, 13131318.CrossRefGoogle ScholarPubMed
Kuhn, H. J. (1978 a). Cross bridge slippage induced by the ATP analogue AMP-PNP and stretch in glycerol-extracted fibrillar muscle fibers. Biophys. Struct. & Mechanism 4, 159168.CrossRefGoogle Scholar
Kuhn, H. J. (1978 b). Tension transients in fibrillar muscle fibers as affected by stretch-dependent binding of AMP-PNP: A teinochemical effect? Biophys. Struct. & Mechanism 4, 209222.CrossRefGoogle ScholarPubMed
Kung, C. (1978). The use of mutants in the studies of ciliary membrane structure and function. Abstracts, U.S.–Japan Science Seminar ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 37.Google Scholar
Lang, N. T. (1963). An additional ultrastructural component of flagella. J. Cell Biol. 19, 631634.CrossRefGoogle ScholarPubMed
Langford, G. M. (1978). Microtubules have a 96 nm axial repeat in the absence of accessory proteins. J. Cell Biol. 79, 289a.Google Scholar
Lee, W. J. & Verdugo, P. (1978). Ciliary activity by laser light-scattering spectroscopy. Ann. Biomed. Eng. 6, 248259.Google Scholar
Linck, R. W. (1979). Advances in the ultrastructural analysis of the sperm flagellar axoneme. In International Symposium on the Spermatozoon: Membrane, Motility, and Maturation (ed. Fawcett, D. W. and Bedford, J. M.). Baltimore: Urban and Schwartzenberg.Google Scholar
Linck, R. & Langevin, G. (1978). Molecular composition and structure of the flagellar microtubule apparatus. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 30.Google Scholar
Lindemann, C. B. (1978). A cAMP-induced increase in the motility of demembranated bull sperm models. Cell 13, 918.CrossRefGoogle ScholarPubMed
Lindemann, C. B. & Gibbons, I. R. (1975). Adenosine triphosphate-induced motility and sliding of filaments in mammalian sperm extracted with Triton X-100. J. Cell Biol. 65, 147162.CrossRefGoogle ScholarPubMed
Lindemann, C. B. & Rikmenspoel, R. (1972). Sperm flagellar motion maintained by ADP. Expl Cell Res. 73, 255258.CrossRefGoogle ScholarPubMed
Lindemann, C. B., Rudd, W. G. & Rikmenspoel, R. (1973). The stiffness of the flagella of impaled bull sperm. Biophys. J. 13, 437448.CrossRefGoogle ScholarPubMed
Liron, N. (1978). Fluid transport by cilia between parallel plates. J. Fluid Mech. 86, 705726.CrossRefGoogle Scholar
Liron, N. & Mochon, S. (1976 a). Stokes flow for a stokeslet between two parallel flat plates. Jnl. Eng. Math. 10, 287303.CrossRefGoogle Scholar
Liron, N. & Mochon, S. (1976 b). The discrete-cilia approach to propulsion of ciliated microorganisms. J. Fluid Mech. 75, 593607.CrossRefGoogle Scholar
Liron, N. & Shahar, R. (1978). Stokes flow to a stokeslet in a pipe. J. Fluid Mech. 86, 727744.CrossRefGoogle Scholar
Lubliner, J. (1973). An analysis of interfilament shear in flagella. J. theor Biol. 41, 119125.CrossRefGoogle ScholarPubMed
Lubliner, J. & Blum, J. J. (1971). Model for bend propagation in flagella. J. theor. Biol. 31, 124.CrossRefGoogle ScholarPubMed
Lubliner, J. & Blum, J. J. (1977). Analysis of bend initiation in cilia according to a sliding filament model. J. theor. Biol. 69, 8799.CrossRefGoogle ScholarPubMed
Luck, D., Piperno, G., Huang, B., Ramanis, Z. & Adams, G. M. W. (1978). Genetical and biochemical analysis of axonemal structure in Chlamydomonas rheinhardtii. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 24.Google Scholar
Mabuchi, M. (1977). Biochemistry of dynein and its role in cell motility.In Horizons in Biochemistry and Biophysics, vol. 5. Reading, Mass.: Addison-Wesley. Reading, Mass. (In the Press.)Google Scholar
Mabuchi, M. & Shimizu, T. (1974). Electrophoretic studies on dyneins from Tetrahymena cilia. J. Biochem. 76, 991999.Google ScholarPubMed
Mabuchi, M., Shimizu, T. & Mabuchi, Y. (1976). A biochemical study of flagellar dynein from starfish spermatozoa: Protein components of the arm structure. Archs Biochem. Biophys. 176, 564576.CrossRefGoogle ScholarPubMed
Machemer, H. (1976). Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium. J. exp. Biol. 65, 427448.CrossRefGoogle ScholarPubMed
Machemer, H., de, Peyer I. & Ogura, A. (1978). Ca-controlled senso-motory coupling in ciliates. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 32.Google Scholar
Machin, K. E. (1958). Wave propagation along flagella. J. exp. Biol. 35, 796806.CrossRefGoogle Scholar
Marchand, B. & Mattei, X. (1977). Un type nouveau de structure flagellaire. Type 9+n. J. Cell Biol. 72, 707713.CrossRefGoogle ScholarPubMed
Masuda, H., Ogawa, K. & Miki-Nomoura, T. (1978). Inhibition of ATP-drive tubule extrusion of trypsin-treted axonemes. Expl Cell Res. 115 435439.CrossRefGoogle Scholar
Miki-Nomoura, T. & Kamiya, R. (1978). Conformational change in the outer doublet microtubules from sea urchin sperm flagella. Abstracts, 6th Int. Biophys. Cong., Kyoto, p. 167.Google Scholar
Mitchell, D. R. & Warner, F. D. (1978). A- and B-tubule binding properties of ciliary dynein arms. J. Cell Biol. 79, 293a.Google Scholar
Mohri, H. (1976). The function of tubulin in motile system. Biochim. biophys. Acta 456, 85127.CrossRefGoogle Scholar
Mohri, H. S., Hasegawa, S., Yamamoto, M. & Murakami, S. (1969). Flagellar adenosinetriphosphatase dynein from sea-urchin spermatozoa. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo (Biol. Part) 19, 195217.Google Scholar
Muhlrad, A. & Afolayan, A. (1975). Studies on the amino groups of myosin ATPase. II. Localization of the amino groups. J. Mεchanochem. & Cell Motility 3, 99102.Google ScholarPubMed
Munn, E. A. & Barnes, H. (1970). The fine structure of the spermatozoa of some cirripedes. Ecology 4, 261268.Google Scholar
Murakami, A. & Takahashi, K. (1975). The role of Ca++ in the control of ciliary movement in Mytilus. II. The effects of calcium ionophores X537A and A23187 on the lateral gill cilia. J. Fac. Sci. Tokyo Univ.Sect. IV, 13, 251256.Google Scholar
Murofushi, H. (1974). Protein kinases in Tetrahymena cilia. II. Partial purification and characterization of adenosine 3′, 5′ -monophosphate-dependent and guanosine 3′,5′-monophosphate-dependent protein kinases. Biochim. biophys. Acta 370, 130139.CrossRefGoogle ScholarPubMed
Naiton, Y. (1978). Bioelectric control of ciliary movement. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 31.Google Scholar
Naitoh, Y. & Eckert, R. (1974). The control of ciliary activity in protozoa. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 305352. New York:Academic Press.Google Scholar
Naitoh, Y. & Kaneko, H. (1972). Reactivated Triton-extracted models of Paramecium. Modification of ciliary movement by calcium ions. Science, N.Y. 176, 523524.CrossRefGoogle Scholar
Nakamura, S. & Kamiya, R. (1978). Bending motion in split flagella of Chlamydomonas. Cell Struct. & Funct. 3, 141144.CrossRefGoogle Scholar
Nakamura, S. & Masuyama, E. (1978). Studies on the initial phase of dynein ATPase activity. Biochim. biophys. Acta 481, 660666.CrossRefGoogle Scholar
Nichols, K. M. & Rikmenspoel, R. (1978). Effects of the microinjection of Mg++, Mn++, Ca++, and K+ on light induced Euglena flagellar reversal. J. Cell Biol. 79, 277a.Google Scholar
Ogawa, K. (1978). The paired arms projecting from the no. 5 doublet micro-tubules. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 26.Google Scholar
Ogawa, K. & Gibbons, I. R. (1976). Dynein 2. A new adenosine triphosphatase from sea urchin sperm flagella. J. biol. Chem. 251, 57935801.CrossRefGoogle ScholarPubMed
Ogawa, K. & Mohri, H. (1972). Studies on flagellar ATPase from sea urchin spermatozoa. I. Purification and some properties of the enzyme. Biochim. biophys. Acta 256, 142155.CrossRefGoogle ScholarPubMed
Ogawa, K. & Mohri, H. (1975). Preparation of antiserum against a tryptic fragment (Fragment A) of dynein and an immunological approach to the sub-unit composition of dynein. J. biol. Chem. 250, 64766483.CrossRefGoogle Scholar
Ogawa, K., Mohri, T. & Mohri, H. (1977 a). Identification of dynein as the outer arms sea urchin sperm axonemes. Proc. natn. Acad. Sci. U.S.A. 74, 50065010.CrossRefGoogle ScholarPubMed
Ogawa, K., Asai, D. J. & Brokaw, C. J. (1977 b). Properties of an antiserum against native dynein i from sea urchin sperm flagella. J. Cell Biol. 73, 182192.CrossRefGoogle ScholarPubMed
Ogura, A. & Takahashi, K. (1976). Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature, Lond. 264, 170172.CrossRefGoogle ScholarPubMed
Okuno, M. (1979). Direct measurement of the stiffness of echinoderm sperm flagella. Biophys. J. 25, 208a.Google Scholar
Okuno, M. & Hiramoto, Y. (1976). Mechanical stimulation of starfish sperm flagella. J. exp. Biol. 65, 401413.CrossRefGoogle ScholarPubMed
Okuno, M. & Hiramoto, Y. (1979). Direct measurements of the stiffness of echinoderm sperm flagella. (In the Press.)CrossRefGoogle Scholar
Olson, G. E. & Linck, R. W. (1977). Observations on the structural components of flagellar axonemes and central pair microtubules from rat sperm. J. Ultrastruct. Res. 61, 2143.CrossRefGoogle ScholarPubMed
Otokawa, M. (1972). Stimulation of ATPase activity of 30-S dynein with microtubular protein. Biochim. biophys. Acta 275, 464466.CrossRefGoogle ScholarPubMed
Otokawa, M. (1973). Inhibitory effect of inorganic phosphate on the axonemal ATPase of ciliary from Tetrahymena pyriformis. Biochim. biophys. Acta 292, 834836.CrossRefGoogle Scholar
Peningroth, S. M. & Witman, G. B. (1978). Effects of adenylylimidodiphosphate, a nonhydrolyzable adenosine triphosphate analog, on reactivated and rigor wave sea urchin sperm. J. Cell Biol. 79, 827832.CrossRefGoogle Scholar
Phillips, D. M. (1970). Insect sperm. Their structure and morphogenesis. J. Cell Biol. 44, 243277.CrossRefGoogle ScholarPubMed
Phillips, D. M. (1972). Comparative analysis of mammalian sperm motility. J. Cell Biol. 53, 561573.CrossRefGoogle ScholarPubMed
Phillips, D. M. (1974). Structural variants in invertebrate sperm flagella and their relationship to motility. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 379402. New York: Academic Press.Google Scholar
Piperno, G. & Luck, D. J. L. (1976). Phosphorylation of axonemal proteins in Chlamydomonas reinhardtii. J. biol. Chem. 251, 21612167.CrossRefGoogle ScholarPubMed
Piperno, G. & Luck, D. J. L. (1978). Purification of two dyneins from axonemes of Chlamydomonas reinhardtii. J. Cell Biol. 79, 296a.Google Scholar
Piperno, G., Huang, B. & Luck, D. J. L. (1977). Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Proc. natn. Acad. Sci. U.S.A. 74, 16001604.CrossRefGoogle ScholarPubMed
Plattner, H. (1975). Ciliary granule plaques: Membrane-intercalated particle aggregates associated with Ca++-binding sites in Paramecium. J. Cell Sci. 18, 257269.CrossRefGoogle Scholar
Prensier, G. (1973). Formation de flagelle atypiquc, sans structure centriolaire basal, an cours de Ia gamétogenèse chez Diplauxis hatti. J. Microscopie 17, 88a.Google Scholar
Raff, E. C. & Blum, J. J. (1966). The effects of adenosine triphosphate and related compounds on some hydrodynamic properties of glycerinated cilia. J. Cell Biol. 31, 445453.CrossRefGoogle ScholarPubMed
Raff, E. C. & Blum, J. J. (1968). A possible role for adenylate kinase in cilia: Concentration profiles in a geometrically constrained dual enzyme system. J. theor. Biol. 18, 5371.CrossRefGoogle Scholar
Raff, E. C. & Blum, J. J. (1969 a). The fractionation of glycerinated cilia by adenosine triphosphate. J. biol. Chem. 244, 366376.CrossRefGoogle ScholarPubMed
Raff, E. C. & Blum, J. J. (1969 b). Some properties of a model assay for ciliary contractility. J. Cell Biol. 42, 831834.CrossRefGoogle Scholar
Rikmenspoel, R. (1971). Contractile mechanisms in flagella. Biophys. J. 11, 446463.CrossRefGoogle ScholarPubMed
Rikmenspoel, R. (1976). Contractile agents in the cilia of Paramecium, Opalina, Mytilus, and Phragmatopoma. Biophys. J. 16, 445470.CrossRefGoogle Scholar
Rikmenspoel, R. (1978 a). The equation of motion for sperm flagella. Biophys. J. 23, 177206.CrossRefGoogle ScholarPubMed
Rikmenspoel, R. (1978 b). The movement of sea urchin sperm. J. Cell Biol. 76, 310322.CrossRefGoogle ScholarPubMed
Rikmenspoel, R. & Rudd, W. G. (1973). The contractile mechanism in cilia. Biophys. J. 13, 955993.CrossRefGoogle ScholarPubMed
Rikmenspoel, R., Orris, S. E. & O'Day, P. (1977). Infrared laser damage to ciliary motion in Phragmatopoma. J. Cell Sci. 24, 361371.CrossRefGoogle ScholarPubMed
Robison, W. G. (1970). Unusual arrangements of microtubules in relation to mechanisms of sperm movement. In Comparative Spermatology (ed. Baccetti, B.), pp. 311320. New York: Academic Press.Google Scholar
Rogalski, A. & Bouck, G. B. (1978). Flagellar membrane glycoprotein does not extend over the cell surface in Euglena. J. Cell Biol. 79, 281 a.Google Scholar
Saiki, M. & Hiramoto, Y. (1975). Control of ciliary activity in Paramecium by intracellular injection of calcium buffers. Cell Struct. & Funct. 1, 3341.CrossRefGoogle Scholar
Sale, W. S. & Satir, P. (1977). Direction of active sliding of microtubules in Tetrahymena cilia. Proc. natn. Acad. Sci. U.S.A. 74, 20452049.CrossRefGoogle ScholarPubMed
Sano, M. (1976). Subcellular localization of guanylate cyclase and 3′,5′- cyclic nucleotide phosphodiesterases in sea urchin sperm. Biochim. biophys. Acta 248, 525531.CrossRefGoogle Scholar
Stair, P. (1974) The present status of the sliding microtubule model of ciliary motion. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 131142. New York: Academic Press.Google Scholar
Satir, P. & Sale, W. S. (1977). Tails of Tetrahymena. J. Protozool. 24, 498501.CrossRefGoogle ScholarPubMed
Sattinger, D. (1973). Topics in stability and bifurcation theory. Springer-Verlag.CrossRefGoogle Scholar
Schrevel, J. & Besse, C. (1975). Un type flagellaire fonctionnel de base 6+0. J. Cell Biol. 66, 492507.CrossRefGoogle ScholarPubMed
Shimizu, T. (1975). Recombination of ciliary dynein of Tetrahymena with outer fibers. J. Biochem. 78, 4149.Google ScholarPubMed
Shimizu, T. & Kimura, I. (1974). Effects of N-ethylmaleimide on dynein adenosinetriphosphatase activity and its recombining ability with outer fibers. J. Biochem. 76, 10011008.Google ScholarPubMed
Shimizu, T. & Kimura, I. (1977). Effects of adenosine triphosphate on N-ethymaleimide-induced modification of 30S dynein from Tetrahymena cilia. J. Biochem. 82, 165173.CrossRefGoogle ScholarPubMed
Shimizu, T., Kaji, K. & Kimura, I. (1977). Effects of p–chloromercuri-phenylsulfonate on ciliary dynein adenosine triphosphatase activity of Tetrahymena pyriformis. J. Biochem. 82, 11451153.CrossRefGoogle Scholar
Shingyoji, C., Murakami, A. & Takahashi, K. (1977). Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature, Lond. 265, 269270.CrossRefGoogle ScholarPubMed
Sleigh, M. A. (1978). Fluid propulsion by cilia and flagella. In Comparative Physiology: Water, Ions, and Fluid Mechanics (ed. Schmidt-Nielsen, K., Bolis, L., and Maddrell, S. H.), pp. 255266. Cambridge University Press.Google Scholar
Smith, J. D., Snyder, W. R. & Law, J. H. (1970). Phosphonolipids in Tetrahymena cilia. Biochem. biophys. Res. Commun. 39, 11631169.CrossRefGoogle ScholarPubMed
Solter, K. M. & Gibor, A. (1978). The relationship between tonicity and flagellar length. Nature, Lond. 275, 651652.CrossRefGoogle ScholarPubMed
Stephens, R. E. (1970). Isolation of nexin – the linkage protein responsible for maintenance of the nine-fold configuration of flagellar axonemes. Biol. Bull. mar. biol. Lab., Woods Hole 139, 438.Google Scholar
Stephens, R. (1978). Primary structural differences among tubulin subunits from flagella, cilia, and the cytoplasm. Biochemistry, N.Y. 17, 28822891.CrossRefGoogle ScholarPubMed
Stephens, R. E. & Levine, E. E. (1970). Some enzymatic properties of axonemes from the cilia of Pecten irradians. J. Cell Biol. 46, 416421.CrossRefGoogle ScholarPubMed
Sturgess, J. M., Chao, J., Wong, J., Aspin, N. & Turner, J. A. P. (1979). Cilia with defective radial spokes. New Engl. J. Med. 300, 5356.CrossRefGoogle ScholarPubMed
Summers, K. (1975). The role of flagellar structures in motility. Biochim. biophys. Acta 416, 153168.CrossRefGoogle ScholarPubMed
Summers, K. E. & Gibbons, I. R. (1971). Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. natn. Acad. Sci. U.S.A. 68, 30923096.CrossRefGoogle ScholarPubMed
Takahashi, M. & Tonomura, Y. (1978). Binding of 30S dynein with the B-tubule of the outer doublet of axoneme from Tetrahymena pyriformis and adenosine triphosphate-induced dissociation of the complex. J. Biochem. 84, 13391356.CrossRefGoogle ScholarPubMed
Tamblyn, T. M. & First, N. L. (1977). Caffeine-stimulated ATP-reactivated motility in a detergent-treated bovine sperm model. Archs. Biochem. Biophys. 181, 208215.CrossRefGoogle Scholar
Tamm, S. L. & Horridge, G. A. (1970). The relation between the orientation of the central fibrils and the direction of beat in cilia of Opalina. Proc. R. Soc. B 175, 219233.Google Scholar
Thomas, M. B. (1970). Transitions between helical and protofibrillar configurations in doublet and singlet microtubules in spermatozoa of Stylochus zebra (Turbellaria, Polycladida). Biol. Bull. mar. biol. lab., Woods Hole 138, 219234.CrossRefGoogle Scholar
Thompson, G. A. Jr, Bambery, R. J. & Nozawa, Y. (1971). Further studies of the lipid composition and biochemical properties of Tetrahymena pyriformis membrane systems. Biochemistry, N.Y. 10, 44414447.CrossRefGoogle ScholarPubMed
Toyotama, H. & Nakaoka, Y. (1978). Mg-dependent ciliary reversal in Paramecium. Abstracts, 6th Int. Biophys. Cong., Kyoto, p. 242.Google Scholar
Tulloch, G. S. & Hershenov, B. R. (1967). Fine structure of platyhelminth sperm tails. Nature, Lond. 213, 299300.CrossRefGoogle ScholarPubMed
Van, Deurs B. (1973). Axonemal 12+0 pattern in the flagellum of the motile spermatozoa of Nymphon leptocheles. J. Ultrastruct. Res. 42, 594598.Google Scholar
Wais, J. & Stair, P. (1979). Effect of vanadate on gill cilia: Switching mechanisms in ciliary beat. Biophys. J. 25, 208a.Google Scholar
Walz, B. (1975). Modified ciliary structures in receptor cells of Macrobiotus Hufelandi (Tardigrada). Cytobiol. 11, 181185.Google Scholar
Warner, F. D. (1974). The fine structure of the ciliary and fiagellar axoneme. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 1137. New York: Academic Press.Google Scholar
Warner, F. D. (1976 a). Ciliary inter-microtubule bridges. J. Cell Sci. 20, 101114.CrossRefGoogle ScholarPubMed
Warner, F. D. (1976 b). Cross-bridge mechanism in ciliary motility: The sliding-bending conversion. In Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation, 3, 891913.Google Scholar
Warner, F. D. (1978). Cation-induced attachment of ciliary dynein crossbridge. J. Cell Biol. 77, R19–R26.CrossRefGoogle Scholar
Warner, F. D. & Mitchell, D. R. (1978). Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J. Cell Biol. 76, 261277.CrossRefGoogle ScholarPubMed
Warner, F. D. & Satir, P. (1974). The structural basis of ciliary bend formation: Radial spoke positional changes accompanying microtubule sliding. J. Cell Biol. 63, 3563.CrossRefGoogle ScholarPubMed
Warner, F. D., Mitchell, D. R. & Perkins, C. R. (1977). Structural conformation of the ciliary ATPase dynein. J. molec. Biol. 114, 367384.CrossRefGoogle ScholarPubMed
Watanabe, T. & Flavin, M. (1976). Nucleotide-metabolizing enzyme in Chiamydomonas flagella. J. biol. Chem. 251, 182192.CrossRefGoogle Scholar
Witman, G. B. (1978). Composition and function of flagellar components in the alga Chlamydomonas. Abstracts, U.S.-Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 36.Google Scholar
Witman, G. B., Plummer, J. & Lamder, G. (1978). Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J. Cell Biol. 76, 729747.CrossRefGoogle ScholarPubMed
Wolniak, S. M. & Cande, W. Z. (1978). Studies of ciliary beat of intact or demembranated bracken spermatozoids. J. Cell Biol. 79, 305a.Google Scholar
Wooley, D. M. (1977). Evidence for twisted plane undulation in golden hamster sperm tails. J. Cell Biol. 75, 851865.CrossRefGoogle Scholar