No CrossRef data available.
Article contents
Nebula Tides and Gap Formation
Published online by Cambridge University Press: 25 April 2016
Extract
An intriguing problem in cosmogony concerns the ability of a planetoid embedded in a nebula disc to clear a gap around its orbit. The application of density wave theory to this problem has demonstrated that a significant exchange of angular momentum can take place between a planetoid and a disc (Goldreich and Tremaine 1980). The torque exerted by the disc on the planetoid can result in orbital drifting of the latter, which may play an important role in the aggregation process (Hourigan and Ward 1983). In fact, in the absence of significant deformation of the nebula, the radial orbital drift rate of a planetoid increases with planetoid mass. In this case, it would be expected that only one or two planetoids would sweep out the nebula, a situation not compatible with present observations. The orbital drift resulting from the generation of density waves therefore requires a limiting mechanism.
- Type
- Contributions
- Information
- Copyright
- Copyright © Astronomical Society of Australia 1984