Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T04:10:11.426Z Has data issue: false hasContentIssue false

Noradrenergic modulation of cognitive function: clinical implications of anatomical, electrophysiological and behavioural studies in animal models1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1993

References

Arnsten, A. F. T. & Contant, T. A. (1992). Alpha-2 adrenergic agonists decrease distractability in aged monkeys performing the delay response task. Psychopharmacology 108, 159169.Google Scholar
Arnsten, A. F. T. & Goldman-Rakic, P. S. (1985). Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230, 12731276.Google Scholar
Arnsten, A. F. T. & Goldman-Rakic, P. S. (1990). Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkey. Neurobiology of Aging 11, 583590.Google Scholar
Arnsten, A. F. T., Cai, J. X. & Goldman-Rakic, P. S. (1988). The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects. Journal of Neuroscience 8, 42874298.Google Scholar
Aston-Jones, G. & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep–waking cycle. Journal of Neuroscience 1, 876886.Google Scholar
Bartus, R. T. (1979). Effects of aging on visual memory, sensory processing and discrimination learning in a nonhuman primate. In Sensory Systems and Communication in the Elderly (Aging Vol. 10) (ed. Ordy, J. M. and Brizzee, K.), pp. 85114. Raven Press: New York.Google Scholar
Bartus, R. T. & Levere, T. E. (1977). Frontal decortication in rhesus monkeys: a test of the interference hypothesis. Brain Research 119, 233249.Google Scholar
Berridge, C. W. & Foote, S. L. (1991). Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. Journal of Neuroscience 11, 31353145.CrossRefGoogle ScholarPubMed
Berridge, C. W., Page, M., Valentino, R. J. & Foote, S. L. (1991). Modulation of forebrain EEG by the locus coeruleus–noradrenergic (LC/NE) system. Society for Neuroscience Abstracts 17, 1541.Google Scholar
Berridge, C. W., Page, M., Valentino, R. J. & Foote, S. L. (1993). Effects of locus coeruleus inactivation on forebrain electroencephalographic activity. Neuroscience (in the press).Google Scholar
Boyajian, C. L. & Leslie, F. M. (1987). Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. Journal of Pharmacology and Experimental Therapeutics 241, 10921098.Google Scholar
Bylund, D. B., Blaxall, H. S., Iversen, L. J., Caron, M. G., Lefkowitz, R. J. & Lomasney, J. W. (1992). Pharmacological characteristics of α-2 adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning, Molecular Pharmacology 42, 15.Google Scholar
Cai, J. X., Ma, Y., Xu, L. & Hu, X. (1992). Reserpine impairs spatial working memory performance in monkeys: reversal by the alpha-2 adrenergic agonist clonidine. (Submitted.)Google Scholar
Carli, M., Robbins, T. W., Evenden, J. L. & Everitt, B. J. (1983). Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research 9, 361380.Google Scholar
Collier, T. J., Gash, D. M. & Sladek, J. R. Jr. (1988). Transplantation of norepinephrine neurones into aged rats improves performance of a learned task. Brain Research 448, 7787.Google Scholar
Davis, H. P., Cohen, S., Gandy, M., Colombo, P., VanDusseldorp, G., Simolke, N. & Romano, J. (1990). Lexical priming deficits as a function of age. Behavioral Neuroscience 104, 288297.CrossRefGoogle ScholarPubMed
Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. (1991). Model systems for the study of seven-transmembrane segment receptors. Annual Review of Biochemistry 60, 653688.Google Scholar
Fields, R. B., Van Kammen, D. P., Peters, J. L., Rosen, J., Van Kammen, W. B., Nugent, A., Stipetic, S. & Linnoila, M. (1988). Clonidine improves memory function in schizophrenia independently from change in psychosis. Schizophrenia Research 1, 417423.Google Scholar
Foote, S. L. & Morrison, J. H. (1987). Extrathalamic modulation of neocortical function. Annual Review of Neuroscience 10, 6795.Google Scholar
Foote, S. L., Freedman, F. E. & Oliver, A. P. (1975). Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Research 86, 229242.Google Scholar
Foote, S. L., Aston-Jones, G. & Bloom, F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences, USA 77, 30333037.Google Scholar
Foote, S. L., Bloom, F. E. & Aston-Jones, G. (1983). The nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiological Reviews 63, 844914.Google Scholar
Goldman-Rakic, P. S. (1987). Circuitry of the primate prefrontal cortex and the regulation of behavior by representational memory. In Handbook of Physiology, The Nervous System, Higher Functions of the Brain, Sect. 1, Vol. V, Pt. 1 (ed. Plum, F.), pp. 373417. American Physiological Society: Bethesda, MD.Google Scholar
Goldman-Rakic, P. S. & Brown, R. M. (1981). Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6, 177187.Google Scholar
Harley, C. W. & Sara, S. J. (1992). Locus coeruleus burst induced by glutamate trigger delayed perforant path spike amplitude potentiation in the dentate gyrus. Experimental Brain Research 89, 581587.Google Scholar
Haroutunian, V., Kanof, P. D., Tsuboyama, G. & Davis, K. L. (1990). Restoration of cholinomimetic activity by clonidine in cholinergic plus noradrenergic lesioned rats. Brain Research 507, 261266.CrossRefGoogle ScholarPubMed
Heginbotham, L. R. & Dunwiddie, T. V. (1991). Long-term increase in the evoked population spike in the CA1 region of rat hippocampus induced by β-adrenergic receptor activation. Journal of Neuroscience 11, 25192527.Google Scholar
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. (1975). Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 5558.Google Scholar
Hopkins, W. F. & Johnston, D. (1984). Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science 226, 350351.Google Scholar
Hopkins, W. F. & Johnston, D. (1988). Noradrenergic enhancement of long-term potentiation at mossy fibre synapses in the hippocampus. Journal of Neurophysiology 59, 667687.Google Scholar
Hunt, R. D., Minderaa, R. B. & Cohen, D. J. (1985). Clonidine benefits children with Attention Deficit Disorder and Hyperactivity: report of a double-blind placebo–crossover therapeutic trial. Journal of the American Academy of Child Psychiatry 5, 617629.Google Scholar
Jackson, W. J. & Buccafusco, J. J. (1991). Clonidine enhances delayed matching-to-sample performance by young and aged monkeys. Pharmacology, Biochemistry, and Behavior 39, 7984.Google Scholar
Jones, C. R. & Palacios, J. M. (1991). Autoradiography of adrenoceptors in rat and human brain: α-adrenoceptor and idazoxan binding sites. Progress in Brain Research 88, 271291.Google Scholar
Knight, R. T., Hillyard, S. A., Woods, D. L. & Neville, H. J. (1981). The effects of frontal cortex lesions on event-related potentials during auditory selective attention. Electroencephalography and Clinical Neurophysiology 52, 571582.Google Scholar
Leslie, F. M., Loughlin, S. E., Sternberg, D. B., McGaugh, J. L., Young, L. E. & Zornetzer, S. F. (1985). Noradrenergic changes in senescent memory loss. Brain Research 359, 292299.Google Scholar
Lorden, J. F., Rickett, E. J., Dawson, R. & Pelleymounter, M. A. (1980). Forebrain norepinephrine and the selective processing of information. Brain Research 190, 569573.Google Scholar
McCormick, D. A., Pape, H. C. & Williamson, A. (1991). Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Progress in Brain Research 88, 293305.Google Scholar
McEntee, W. J. & Mair, R. G. (1990). The Korsakoff syndrome: a neurochemical perspective. Trends in Neuroscience 13, 340344.Google Scholar
Mair, R. G. & McEntee, W. J. (1986). Cognitive enhancement in Korsakoff's psychosis by clonidine: a comparison with L-dopa and ephedrine. Psychopharmacology 88, 374380.Google Scholar
Moffoot, A., O'Carroll, R. E., Murray, C., Dougall, N., Ebmeier, K. P. & Goodwin, G. M. (1993). Effects of clonidine on cognition and rCBF in Korsakoff's psychosis. Psychological Medicine (in the press).Google Scholar
Oke, A. F. & Adams, R. N. (1978). Selective attention dysfunction in adult rats neonatally treated with 6-hydroxydopamine. Pharmacology, Biochemistry, and Behavior 9, 429432.Google Scholar
Pineda, J. A., Foote, S. L. & Neville, H. J. (1989). Effects of locus coeruleus lesions on auditory, long-latency, event related potentials in monkey. Journal of Neuroscience 9, 8193.Google Scholar
Regan, J. W., Kobilka, T. S., Yang-Feng, T. L., Caron, M. G., Lefkowitz, R. J. & Kobilka, B. K. (1988). Cloning and expression of a human kidney cDNA for an alpha-2 adrenergic receptor subtype. Proceedings of the National Academy of Sciences, USA 85, 63016305.Google Scholar
Roberts, D. S. C., Price, M. T. C. & Fibiger, H. C. (1975). The dorsal tegmental noradrenergic projection: an analysis of its role in maze learning. Journal of Comparative Physiological Psychology 90, 363372.Google Scholar
Schlegel, J., Mohr, E., Williams, J., Mann, U., Gearing, M. & Chase, T. N. (1989). Guanfacine treatment of Alzheimer's disease. Clinical Neuropharmacology 12, 124128.Google Scholar
Schneider, J. S. & Kovelowski, C. J. (1990). Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Research 519, 122128.CrossRefGoogle ScholarPubMed
Selden, N. R. W., Robbins, T. W. & Everitt, B. J. (1990). Enhanced behavioral conditioning to context and impaired behavioral and neuroendocrine responses to conditioned stimuli following ceruleocortical noradrenergic lesions: support for an additional hypothesis of central noradrenergic function. Journal of Neuroscience 10, 531539.CrossRefGoogle Scholar
Stanton, P. K. & Sarvey, J. M. (1985). Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. Journal of Neuroscience 5, 21692176.Google Scholar
Stanton, P. K. & Sarvey, J. M. (1987). Norepinephrine regulates long-term potentiation of both the population spike and dendritic EPSP in hippocampal dentate gyrus. Brain Research Bulletin 18, 115119.Google Scholar
Svensson, T. H., Bunney, B. S. & Aghajanian, G. K. (1975). Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Brain Research 92, 291306.CrossRefGoogle ScholarPubMed
Swick, D., Pineda, J. A., Holmes, T. C. & Foote, S. L. (1988). Effects of clonidine on P300-like potentials in squirrel monkeys. Society for Neuroscience Abstracts 14, 1014.Google Scholar
Uhlen, S. & Wikberg, J. E. S. (1991). Delineation of rat kidney alpha 2A and alpha 2B-adrenoceptors with [3H]RX821002 radioligand binding: computer modelling reveals that guanfacine is an alpha 2A-selective compound. European Journal of Pharmacology 202, 235243.Google Scholar
Vogt, B. A. (1991). The role of layer I in cortical function. In Cerebral Cortex, Vol. 9 (ed. Jones, E. G. and Peters, A.), pp. 4980. Plenum Press: New York.Google Scholar
Woods, D. L. & Knight, R. T. (1986). Electrophysiological evidence of increased distractibility after dorsolateral prefrontal lesions. Neurology 36, 212216.Google Scholar
Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J. & Freedman, R. (1979). Modulatory actions of norepinephrine in the central nervous system. Federation Proceedings 38, 21092116.Google Scholar