Article contents
XI.—The Zeta Function of Jacobi. A seven-decimal table of Z(u/m) at interval 0·01 for u and for values of m(= k2) from 0·1 to 1·0
Published online by Cambridge University Press: 15 September 2014
Extract
The elliptic integral of the second kind
can, by substitution, be made to depend upon
Writing E(K) = E, Jacobi's Zeta function is defined by
where
Z(u) is an odd function of u with period 2K.
- Type
- Proceedings
- Information
- Copyright
- Copyright © Royal Society of Edinburgh 1933
References
page 236 note * Whittaker, and Watson, , Modern Analysis, 22·73.Google Scholar
page 236 note † Milne-Thomson, L. M., Proc. London Math. Soc., (2) 33 (1931).Google Scholar
page 236 note ‡ For five-figure tables of sn u, cn u, dn u, see Milne-Thomson, , Die elliptischen Funktionen von Jacobi, Berlin, Julius Springer, 1931.CrossRefGoogle Scholar
page 236 note § Whittaker and Robinson, Calciava of Observations, ch. vii.
page 237 note * Milne-Thomson, L. M., Journal London Math. Soc., 5 (1930), p. 148.CrossRefGoogle Scholar
- 1
- Cited by