Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T15:02:36.630Z Has data issue: false hasContentIssue false

11.—The Symmetry of Atomic Vibrations in KH2PO4*

Published online by Cambridge University Press:  14 February 2012

H. Montgomery
Affiliation:
Department of Physics, University of Edinburgh
G. L. Paul
Affiliation:
Department of Physics, University of Edinburgh

Synopsis

The space group for paraelectric KH2PO4 is described and tables of irreducible representations are presented. These are used to derive the symmetry of the vibrational modes for both the heavy atoms and the hydrogen atoms, the latter being treated by a simple pseudo-spin model. Recent experiments on KH2PO4 and related materials are analysed in terms of the mode symmetries, and the light these experiments throw upon the nature of the phase transitions is briefly discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Altmann, S. L. and Cracknell, A. P., 1965. Rev. Mod. Phys., 37, 19.Google Scholar
Bacon, G. E. and Pease, R. S., 1953. Proc. Roy. Soc., A220, 397.Google Scholar
Bacon, G. E. and Pease, R. S., 1955. Proc. Roy. Soc., A230, 359.Google Scholar
Blinc, R., 1960. J. Phys. Chem. Solids, 13, 204.Google Scholar
Blinc, R., Stepisnik, J., Jamsek-Vilfan, M. and Zumer, S., 1971. J. Chem. Phys., 54, 187.Google Scholar
Cochran, W., 1961. Adv. Phys., 10, 401.CrossRefGoogle Scholar
Elliott, R. J., 1971. Notes for the summer school on ‘Structural Phase Transitions and Soft Modes’ held at Geilo, Norway.Google Scholar
De Gennes, P. G., 1963. Solid St. Comm., 1, 132.Google Scholar
Kaminow, I. P., 1965. Phys. Rev., 138A, 1539.Google Scholar
Kaminow, I. P. and Damen, T. C. 1968. Phys. Rev. Lett., 20, 1105.CrossRefGoogle Scholar
Katiyar, R. S., Ryan, J. F. and Scott, J. F., 1971. Phys. Rev., B4, 2635.CrossRefGoogle Scholar
Kobayashi, K. K., 1968. J. Phys. Soc. Japan, 24, 497.Google Scholar
Koster, G. F., 1957. Solid St. Phys., 5, 173.CrossRefGoogle Scholar
Kovalev, O. V., 1965. Irreducible Representations of Space Groups. New York: Gordon and Breach. (Originally published by USSR Acad. Scis., Kiev, 1961.)Google Scholar
Lax, M., 1966. ‘Symmetry principles in solid state physics’. Notes for International Course on Theory of condensed matter, Trieste, Italy.Google Scholar
Meister, H., Skalyo, J., Frazer, B. C. and Shirane, G., 1969. Phys. Rev., 184, 550.Google Scholar
Montgomery, H., 1969. Proc. Roy. Soc., A309, 521.Google Scholar
Nagamiya, T., 1952. Prog. Theor. Phys., Osaka, 7, 275.Google Scholar
Novakovic, L., 1966. J. Phys. Chem. Solids, 27, 1469.CrossRefGoogle Scholar
Novakovic, L., 1967. Bull. Boris Kidric Inst., 18 (Phys), 23.Google Scholar
Novakovic, L., 1970. J. Phys. Chem. Solids, 31, 431.Google Scholar
Novakovic, L., 1971, J. Phys. Chem. Solids, 32, 487.Google Scholar
Parmenter, R. H., 1955. Phys. Rev., 100, 573.CrossRefGoogle Scholar
Paul, G. L., Cochran, W., Buyers, W. J. L. and Cowley, R. A., 1970. Phys. Rev., B2, 4603.Google Scholar
Ryan, J. F., Katiyar, R. S. and Taylor, W., 1971. Proc. 2nd Eur. Meet, on Ferroelectricity, Dijon. (To be published in J. Phys. Radium, Paris.)Google Scholar
Shur, M. S., 1966. Soviet Phys-Solid St., 8, 43.Google Scholar
Shur, M. S., 1967. Soviet Phys.—Crystallogr., 12, 181.Google Scholar
Sirottn, Yu. I., 1967. Soviet Phys.—Crystallogr., 12, 175.Google Scholar
Skalyo, J., Frazer, B. C. and Shirane, G., 1970. Phys. Rev., B1, 278.Google Scholar
Slater, J.C. 1941. J. Chem. Phys., 9, 16.Google Scholar
Tokunaga, M. and Matsubara, T., 1966. Prog. Theor. Phys., Osaka, 35, 581.CrossRefGoogle Scholar
White, K. I., Taylor, W., Kattyar, R. S. and Kay, S. M., 1970. Phys. Lett., 33A, 175.CrossRefGoogle Scholar
Wilson, C. M., 1970. Thesis, Johns Hopkins Univ.Google Scholar
Ziman, J. M., 1964. Principles of the Theory of Solids, p. 319. C.U.P.Google Scholar