Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T13:17:33.819Z Has data issue: false hasContentIssue false

The role of convection in AGB modeling

Published online by Cambridge University Press:  01 August 2006

Paolo Ventura*
Affiliation:
INAF - Osservatorio Astronomico di Roma Via Frascati 33, 00040 MontePorzio Catone (RM), Italy email: ventura@oa-roma.inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The modeling of the Asymptotic Giant Branch phase is made highly uncertain by some still unsolved issues related to the input macro-physics used to calculate the stellar evolution, namely mass loss, nuclear cross sections, overshooting and convective modeling. We show that in the massive intermediate mass models, which achieve at the bottom of their convective envelope temperatures sufficiently high to favour an advanced nucleosynthesis, the treatment of convection plays a major role in determining the physical and chemical evolution of the stellar models during this evolutionary phase.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Abia, C., Boffin, H.M.J., Isern, J., & Rebolo, R. 1991, A&A 245, L1Google Scholar
Angulo, C. 1999, Nucl. Phys. A, 656, 3CrossRefGoogle Scholar
Blöcker, T. 1995, A&A 297, 727Google Scholar
Blöcker, T. & Schönberner, R. 1991, A&A 244, L43Google Scholar
Cameron, A.G. & Fowler, W.A. 1971, ApJ 164, 111CrossRefGoogle Scholar
Canuto, V.M. 1992, ApJ 389, 742CrossRefGoogle Scholar
Canuto, V.M. & Mazzitelli, I. 1991, ApJ 370, 295CrossRefGoogle Scholar
Carretta, E. 2006, AJ 131, 1766CrossRefGoogle Scholar
Cloutman, L. & Eoll, J.G. 1976, ApJ 206, 548CrossRefGoogle Scholar
D'Antona, F. & Mazzitelli, I. 1996, ApJ 470, 1093CrossRefGoogle Scholar
Freytag, B., Ludwig, H.G., & Steffen, M. 1996, A&A 313, 497Google Scholar
Frogel, J.A., Mould, J., & Blanco, V.M. 1990, ApJ 352, 96CrossRefGoogle Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARAA 42, 385CrossRefGoogle Scholar
Herwig, F., Blöcker, T., & Schönberner, D. 1997, A&A 324, L81Google Scholar
Iben, I.J. 1975, ApJ 196, 525CrossRefGoogle Scholar
Iben, I.J. 1976, ApJ 208, 165CrossRefGoogle Scholar
Ivans, I.I., Sneden, C., Kraft, R.P., et al. 1999, AJ 118, 1273CrossRefGoogle Scholar
Schwartzschild, M. & Harm, R. 1965, ApJ 142, 855CrossRefGoogle Scholar
Schwartzschild, M. & Harm, R. 1967, ApJ 150, 961CrossRefGoogle Scholar
Smith, V.V., Lambert, D.L., & McWilliam, A. 1987, ApJ 320, 862CrossRefGoogle Scholar
Smith, V.V. & Lambert, D.L. 1989, ApJ 345, L75CrossRefGoogle Scholar
Smith, V.V. & Lambert, D.L. 1990, ApJ 361, L69CrossRefGoogle Scholar
Ventura, P., & D'Antona, F. 2005, ApJ 635, L149CrossRefGoogle Scholar
Ventura, P., & D'Antona, F. 2005, ApJ 431, 279Google Scholar
Ventura, P., D'Antona, F., & Mazzitelli, I. 2000, A&A 363, 605Google Scholar
Ventura, P., D'Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ 550, L65CrossRefGoogle Scholar
Ventura, P., Zeppieri, A., D'Antona, F., & Mazzitelli, I. 1998, A&A 334, 953Google Scholar
Vitense, E. 1953, ZfA 32, 135Google Scholar
Xiong, D.R. 1985, A&A 150, 133Google Scholar