No CrossRef data available.
Article contents
Pushing the technical frontier: From overwhelmingly large data sets to machine learning
Published online by Cambridge University Press: 10 June 2020
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
This paper summarizes my thoughts, given in an invited review at the IAU symposium 341 “Challenges in Panchromatical Galaxy Modelling with Next Generation Facilities”, about how machine learning methods can help us solve some of the big data problems associated with current and upcoming large galaxy surveys.
Keywords
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 15 , Symposium S341: Challenges in Panchromatic Modelling with Next Generation Facilities , November 2019 , pp. 88 - 98
- Copyright
- © International Astronomical Union 2020
References
Dieleman, S., Willett, K. W., & Dambre, J. 2015, Mon. Not. R. Astron. Soc., 450, 144110.1093/mnras/stv632CrossRefGoogle Scholar
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. 2014, ArXiv e-prints, 1406.2661Google Scholar
Hocking, A., Geach, J. E., Sun, Y., & Davey, N. 2018, Mon. Not. R. Astron. Soc., 473, 1108CrossRefGoogle Scholar
Huertas-Company, M., Primack, J. R., Dekel, A., Koo, D. C., Lapiner, S., Ceverino, D., Simons, R. C., Snyder, G. F., Bernardi, M., Chen, Z., Domnguez-Sánchez, H., Lee, C. T., Margalef-Bentabol, B., & Tuccillo, D. 2018, Astrophys. J., 858, 114CrossRefGoogle Scholar
Katebi, R., Zhou, Y., Chornock, R., & Bunescu, R. 2019, Mon. Not. R. Astron. Soc., 486, 153910.1093/mnras/stz915CrossRefGoogle Scholar
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., & Shi, W. 2016, arXiv e-prints,arXiv:1609.04802Google Scholar
Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M. J., Nichol, R. C., Szalay, A., Andreescu, D., Murray, P., & Vandenberg, J. 2008, Mon. Not. R. Astron. Soc., 389, 1179CrossRefGoogle Scholar
Molnar, C. 2018, Interpretable Machine Learning (https://christophm.github.io/interpretable-ml-book/), https://christophm.github.io/interpretable-ml-book/Google Scholar
Naul, B., Bloom, J. S., Pérez, F., & van der Walt, S. 2018, Nature Astronomy, 2, 151CrossRefGoogle Scholar
Petrillo, C. E., Tortora, C., Chatterjee, S., Vernardos, G., Koopmans, L. V. E., Verdoes Kleijn, G., Napolitano, N. R., Covone, G., Schneider, P., Grado, A., & McFarland, J. 2017, ArXiv e-prints, 1702,arXiv:1702.07675Google Scholar
Schawinski, K., Zhang, C., Zhang, H., Fowler, L., & Santhanam, G. K. 2017, Mon. Not. R. Astron. Soc., 467, L110Google Scholar
Tuccillo, D., Huertas-Company, M., Decencière, E., & Velasco-Forero, S. 2017, in IAU Symposium, Vol. 325, Astroinformatics, ed. Brescia, M., Djorgovski, S. G., Feigelson, E. D., Longo, G., & Cavuoti, S., 191–196CrossRefGoogle Scholar
Vanderplas, J., Connolly, A., Ivezić, Ž., & Gray, A. 2012, in Conference on Intelligent Data Understanding (CIDU), 47–54Google Scholar
You have
Access