Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T09:13:21.153Z Has data issue: false hasContentIssue false

Probing the luminous and dark matter profiles in the inner regions of a group-scale lens at z = 0.6

Published online by Cambridge University Press:  10 June 2020

Mônica Tergolina
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Física Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil email: monica.tergolina@ufrgs.br
Cristina Furlanetto
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Física Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil email: monica.tergolina@ufrgs.br
Marina Trevisan
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Física Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil email: monica.tergolina@ufrgs.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Studying the density profiles of galaxy groups offers an important insight on how large-scale structure in the Universe formed and evolved, since galaxy groups bridge the gap between individual galaxies and galaxy clusters. We aim to probe the total density profile of the galaxy group that is gravitational lensing HELMS18, a submillimeter galaxy at z = 2.39 from the Herschel’s HerMES Large Mode Survey (HELMS), by combining strong gravitational lensing with kinematics of the centrally-located galaxies and kinematics of the group members. We will use high-resolution data of HELMS18 obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and multi-object spectroscopic data of the group members from Gemini-GMOS. Our final goal is to combine these observations to probe the stellar and dark matter density profiles and to build a complete description of this galaxy group.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bartelmann, M., Limousin, M., Meneghetti, M., Schmidt, R., et al. 2013, Space Science Reviews, 177, 310.1007/s11214-013-9977-6CrossRefGoogle Scholar
Sand, D. J., Treu, T., Ellis, R. S., Smith, G. P., Kneib, J.-P., et al. 2008, ApJ, 674, 71110.1086/524652CrossRefGoogle Scholar
Newman, J. A., Cooper, M. C., Davis, M., Faber, S. M., Coil, A. L., Guhathakurta, P., Koo, D. C., Phillips, A. C., et al. 2013, ApJS, 208, 510.1088/0067-0049/208/1/5CrossRefGoogle Scholar
Amvrosiadis, A., Eales, S. A., Negrello, M., Marchetti, L., Smith, M. W. L., Bourne, N., Clements, D. L., De Zotti, G., et al. 2018, MNRAS, 475, 493910.1093/mnras/sty138CrossRefGoogle Scholar
Dye, S., Furlanetto, C., Dunne, L., Eales, S. A., Negrello, M., Nayyeri, H., van der Werf, P. P., Serjeant, S., et al. 2018, MNRAS, 476, 438310.1093/mnras/sty513CrossRefGoogle Scholar