Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T10:41:25.126Z Has data issue: false hasContentIssue false

MHD waves at a spherical interface modelling coronal global EIT waves

Published online by Cambridge University Press:  01 September 2007

M. Douglas
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK email: mark.douglas@sheffield.ac.uk; i.ballai@sheffield.ac.uk
I. Ballai
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK email: mark.douglas@sheffield.ac.uk; i.ballai@sheffield.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Energetically eruptive events such as flares and coronal mass ejections (CMEs) are known to generate global waves, propagating over large distances, sometimes comparable to the solar radius. In this contribution EIT waves are modelled as waves propagating at a spherical density interface in the presence of a radially expanding magnetic field. The generation and propagation of EIT waves is studied numerically for coronal parameters. Simple equilibria allow the explanation of the coronal dimming caused by EIT waves as a region of rarified plasma created by a siphon flow.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Attrill, G. D. R., Harra, L. K., van Driel-Gesztelyi, L. et al. 2007, Astron. Nachr. 328, 760Google Scholar
Ballai, I., Erdélyi, R. and Pintér, B. 2005, ApJ Letters 633, L145CrossRefGoogle Scholar
Banerjee, D., Erdélyi, R., Oliver, R. and O'Shea, E. 2007. Solar Phys. 246, 3CrossRefGoogle Scholar
De Pontieu, B. and Erdélyi, R. 2006, Phil. Trans. Roy. Soc. A 364, 383CrossRefGoogle Scholar
Donea, A.-C., Besliu-Ionescu, D., Cally, P. S. et al. 2006, Solar Phys. 239, 113Google Scholar
Douglas, M. and Ballai, I. 2007, Astron. Nachr. 328, 769CrossRefGoogle Scholar
Edwin, P. M. and Roberts, B. 1983, Solar Phys. 88, 179Google Scholar
Erdélyi, R. 2006a. Phil. Trans. Roy. Soc. A 364, 351Google Scholar
Erdélyi, R. 2006b. in Fletcher, L. and Thompson, M. (eds) SOHO 18/GONG 2006/HELAS I: Beyond the spherical Sun, Sheffield, ESA SP-624, 15.1Google Scholar
Moreton, G. E. and Ramsey, H. E. 1960, PASP 72, 357Google Scholar
Nakariakov, V. M. and Verwichte, E. 2005. LRSP 2, 3Google Scholar
Parker, E. N. 1978, ApJ 221, 368CrossRefGoogle Scholar
Thompson, B. J., Gurman, J. B., Neupert, W. M. et al. 1999, ApJ (Letters) 517, L151Google Scholar
Wentzel, D. G. 1979, ApJ 227, 319Google Scholar