Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T20:21:15.849Z Has data issue: false hasContentIssue false

The e-ASTROGAM space mission: a major step forward for supernova physics

Published online by Cambridge University Press:  17 October 2017

Vincent Tatischeff
Affiliation:
CSNSM, IN2P3-CNRS/Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay Campus, France email: vincent.tatischeff@csnsm.in2p3.fr
Roland Diehl
Affiliation:
Max Planck Institut für extraterrestrische Physik, D-85748 Garching, Germany email: rod@mpe.mpg.de
Alessandro De Angelis
Affiliation:
INFN Padova, via Marzolo 8, 35141, Padova, Italy LIP/IST, Av. Elias Garcia 14, 1000 Lisboa, Portugal email: alessandro.deangelis@pd.infn.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

e-ASTROGAM is a gamma-ray observatory operating in a broad energy range, 0.15 MeV – 3 GeV, recently proposed as the M5 Medium-size mission of the European Space Agency. It has the potential to revolutionize the astronomy of medium-energy gamma-rays by increasing the number of known sources in this domain by more than an order of magnitude and providing gamma-ray polarization information for many of these sources. In these proceedings, we discuss the expected capacity of the mission to study the physics of supernovae, both thermonuclear and core-collapse, as well as the origin of cosmic rays in SN shocks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Acero, F., Ackermann, M., Ajello, M., et al. 2016, ApJS, 224, 8 CrossRefGoogle Scholar
Axford, W. I. 1994, ApJS, 90, 937 Google Scholar
Boggs, S. E., Harrison, F. A., Miyasaka, H., et al. 2015, Science, 348, 670 CrossRefGoogle Scholar
Churazov, E., Sunyaev, R., Isern, J., et al. 2014, Nature, 512, 406 CrossRefGoogle Scholar
Churazov, E., Sunyaev, R., Isern, J., et al. 2015, ApJ, 812, 62 CrossRefGoogle Scholar
De Angelis, A., Tatischeff, V., Tavani, M., et al. 2016, Exp. Ast., in press, arXiv:1611.02232Google Scholar
Diehl, R., Siegert, T., Hillebrandt, W., et al. 2014, Science, 345, 1162 Google Scholar
Diehl, R., Siegert, T., Hillebrandt, W., et al. 2015, A&A, 574, A72 Google Scholar
Dufour, F. & Kaspi, V. M. 2013, ApJ, 775, 52 Google Scholar
Gal-Yam, A., Mazzali, P., Ofek, E. O., et al. 2009, Nature, 462, 624 Google Scholar
Grebenev, S. A., Lutovinov, A. A., Tsygankov, S. S., & Winkler, C. 2012, Nature, 490, 373 CrossRefGoogle Scholar
Grefenstette, B. W., Fryer, C. L., Harrison, F. A., et al. 2017, ApJ, 834, 19 Google Scholar
Grefenstette, B. W., Harrison, F. A., Boggs, S. E., et al. 2014, Nature, 506, 339 Google Scholar
Hillebrandt, W., Kromer, M., Röpke, F. K., & Ruiter, A. J. 2013, Frontiers of Physics, 8, 116 Google Scholar
Hillebrandt, W. & Niemeyer, J. C. 2000, ARAA, 38, 191 Google Scholar
Isern, J., Jean, P., Bravo, E., et al. 2016, A&A, 588, A67 Google Scholar
Janka, H.-T. 2012, Annual Review of Nuclear and Particle Science, 62, 407 Google Scholar
Nomoto, K., Thielemann, F.-K., Yokoi, K. 1984, ApJ, 286, 644 CrossRefGoogle Scholar
Phillips, M. M. 1993, ApJ, 413, L105 CrossRefGoogle Scholar
Ramaty, R., Kozlovsky, B., & Lingenfelter, R. E. 1979, ApJS, 40, 487 Google Scholar
The, L.-S. & Burrows, A. 2014, ApJ, 786, 141 CrossRefGoogle Scholar
The, L.-S., Clayton, D. D., Diehl, R., et al. 2006, A&A, 450, 1037 Google Scholar
Tsygankov, S. S., Krivonos, R. A., Lutovinov, A. A., et al. 2016, MNRAS, 458, 3411 Google Scholar
Uchiyama, Y., Funk, S., Katagiri, H., et al. 2012, ApJL, 749, L35 CrossRefGoogle Scholar
Woosley, S. & Janka, T. 2005, Nature Physics, 1, 147 Google Scholar