Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T13:26:06.471Z Has data issue: false hasContentIssue false

The contribution of plutinos to the Centaur population

Published online by Cambridge University Press:  06 April 2010

Romina P. Di Sisto
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas - UNLP, IALP - CONICET, Paseo del Bosque S/N, La Plata. Argentina email: romina@fcaglp.unlp.edu.ar, gdeelia@fcaglp.unlp.edu.ar, abrunini@fcaglp.unlp.edu.ar
Adrián Brunini
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas - UNLP, IALP - CONICET, Paseo del Bosque S/N, La Plata. Argentina email: romina@fcaglp.unlp.edu.ar, gdeelia@fcaglp.unlp.edu.ar, abrunini@fcaglp.unlp.edu.ar
Gonzalo C. de Elía
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas - UNLP, IALP - CONICET, Paseo del Bosque S/N, La Plata. Argentina email: romina@fcaglp.unlp.edu.ar, gdeelia@fcaglp.unlp.edu.ar, abrunini@fcaglp.unlp.edu.ar
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a study of the dynamical evolution of plutinos recently escaped from the resonance through numerical simulations. It was shown in previous works the existence of weakly chaotic orbits in the plutino population that diffuse very slowly finally diving into a strong chaotic region. These orbits correspond to long-term plutino escapers and then represent the plutinos that are escaping from the resonance at present. Then, we divided the numerical simulation in two parts. First, we develop a numerical simulation of 20,000 test particles in the resonance in order to detect the long-term escapers. We set the initial orbital elements such that cover the present observational range of orbital elements of plutinos. Second, we perform a numerical simulation of the selected escaped plutinos in order to study their dynamical post escaped behavior. We describe and characterize the routes of escape of plutinos and their evolution in the Centaur zone. Also, we obtain that Centaurs coming from plutinos would represent a fraction of less than 6% of the total Centaur population.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bernstein, G. M., Trilling, D. E., Allen, R. L., et al. 2004, AJ, 128, 1364CrossRefGoogle Scholar
de Elía, G. C. & Brunini, A. 2008, A&A, 490, 835Google Scholar
Di Sisto, R. P. & Brunini, A. 2007, Icarus, 190, 224CrossRefGoogle Scholar
Duncan, M. J., Levison, H. F., & Budd, S. M. 1995, AJ, 110, 3073CrossRefGoogle Scholar
Elliot, J. L., Kern, S. D., Clancy, K. B., et al. 2005, AJ, 129, 1117CrossRefGoogle Scholar
Fernández, J. A., Gallardo, T., & Brunini, A. 2002, Icarus, 159, 358CrossRefGoogle Scholar
Fernández, J. A., Gallardo, T., & Brunini, A. 2004, Icarus, 172, 372CrossRefGoogle Scholar
Gallardo, T. 2006, Icarus, 184, 29.CrossRefGoogle Scholar
Kenyon, S. J., Bromley, B. C., O'Brien, D. P., & Davis, D. R. 2008, in: Barucci, M. A., Boehnhardt, H., Cruikshank, D., & Morbidelli, A. (eds.), The Solar System Beyond Neptune, (Tucson: University of Arizona Press), p. 293Google Scholar
Melita, M. D. & Brunini, A. 2000, Icarus, 147, 205CrossRefGoogle Scholar
Morbidelli, A. 1997, Icarus, 127, 1CrossRefGoogle Scholar
Nesvorný, D., Roig, F., & Ferraz-Mello, S. 2000, AJ, 119, 953CrossRefGoogle Scholar
Nesvorný, D. & Roig, F. 2000, Icarus, 148, 282CrossRefGoogle Scholar
Yu, Q. & Tremaine, S. 1999, AJ, 118, 1873CrossRefGoogle Scholar