Skip to main content Accessibility help
×
Home

Vibrational modes of graphitic fragments and the nucleation of carbon nanotubes

  • Manuela Volpe (a1), Fabrizio Cleri (a2), Gregorio D'Agostino (a3) and Vittorio Rosato (a2)

Abstract

We studied the nucleation mechanism of carbon nanotubes based on the hypothesis that the starting nanotube seed can be nucleated by rolling a small fragment of a graphite sheet (graphene) under thermal fluctuations. The energy barriers for rolling a graphene along different crystallographic directions are calculated from a tight-binding model,. We then estimate the relative weight of the large-amplitude fluctuations corresponding to low-frequency vibrational modes of graphene sheets of increasing size. Direct molecular dynamics simulation of the high- temperature fluctuation of a pair of parallel graphenes demonstrates that a nanotube closed at one end can spontaneously form. We discuss the combined effects due to: (a) the decrease of the energy barriers against rolling with increasing nanotube radius, and (b) the increase of random fluctuations with increasing size of the graphene sheet. The superposition of such effects may lead to a preferential range of nanotube diameters which could nucleate more abundantly than others.

Copyright

References

Hide All
1. Ijima, S. and Saito, S., Science 245, 334 (1991).
2. Fournet, C. et al. , Nature 388, 756 (1997).
3. Ishigami, M., Cumings, J., Zettle, A. Chen, S., Chem. Phys. Lett. 319, 457 (2000).
4. Smalley, R. E. et al. , Nature 403, 384 (1993).
5. Thess, A. et al. , Science 273, 483 (1996).
6. Maiti, A., Brabec, C. J. and Bernholc, J., Phys. Rev. B 55, 6097 (1997).
7. Nardelli, M. Buongiorno et al. , Phys. Rev. Lett. 80, 313 (1998).
8. Charlier, J. C., Vita, A. De, Blase, X. and Car, R., Science 275, 646 (1997).
9. Maiti, A., Brabec, C. J., Roland, C. M. and Bernholc, J., Phys. Rev. Lett. 73, 2468 (1994).
10. Brabec, C. J., Maiti, A., Roland, C. M. and Bernholc, J., Chem. Phys. Lett. 236, 150 (1995).
11. Ho, D. H. and Lee, Y. H., Phys. Rev. B 58, 7407 (1998).
12. Xia, Y. et al. , Phys. Rev. B 61, 11088 (2000).
13. Schmalz, T. G. et al. , J. Am. Chem. Soc., 110, 1113 (1988).
14. Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Chem. Phys. Lett. 195, 537 (1992).
15. Brabec, C. J., Maiti, A. and Bernholc, J., Chem. Phys. Lett. 219, 473 (1994).
16. Charlier, J., Ebbesen, T. W. and Lambin, P., Phys. Rev. B 53, 11108 (1996).
17. Xu, C. H., Wang, C. Z., Chan, C. T. and Ho, K. M., J. Phys. Cond. Matt. 4, 334 (1996).
18. Rahman, A., Phys. Rev. 34, 6047 (1969).
19. Colombo, L. and Goedecker, S., Phys. Rev. Lett. 73, 122 (1994).

Related content

Powered by UNSILO

Vibrational modes of graphitic fragments and the nucleation of carbon nanotubes

  • Manuela Volpe (a1), Fabrizio Cleri (a2), Gregorio D'Agostino (a3) and Vittorio Rosato (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.