Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T01:17:14.461Z Has data issue: false hasContentIssue false

Thickness Dependence and Electrical Properties of Ultrathin PZT Films Grown on SrRuO3/SrTiO3 by MOCVD

Published online by Cambridge University Press:  10 February 2011

M. Shimizu
Affiliation:
Department of Electronics, Faculty of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan. mshimizu@elnics.eng.himeji-tech.ac.jp
H. Fujisawa
Affiliation:
Department of Electronics, Faculty of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan.
H. Niu
Affiliation:
Department of Electronics, Faculty of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan.
Get access

Abstract

Epitaxial Pb(Zr,Ti)O3 (PZT) thin films with various thicknesses ranging from 40 to 400nm were prepared on SrRuO3/SrTiO3 by metalorganic chemical vapor deposition (MOCVD). The dependence of lattice constant on the film thickness and temperature was examined. The PZT films obtained showed ferroelectric hysteresis loops even when film thickness was 40nm. Applied voltage for obtaining high polarization density decreased as film thickness decreased. The 40nm-thick PZT film had the polarization density (Pr) of 38mC/cm2 at an applied voltage (Vc) of 0.7V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Torii, K., kaga, T., Kushida, K., Takeuchi, H. and Takeda, E., Jpn.J.Appl.Phys., 30, 3562 (1991).Google Scholar
2. Sakashita, Y., Segawa, H., Tominaga, K. and Okada, M., J.Appl.Phys., 73, 7857 (1993).Google Scholar
3. Larsen, P. K., Dormans, G. J. M., Taylor, D. J. and van Veldhoven, P. J., J.Appl.Phys., 76, 2405 (1994).Google Scholar
4. Basceri, C., Streiffer, S. K., Kingon, A. I. and Waser, R., J.Appl.Phys., 82, 2497 (1997).Google Scholar
5. Zhu, J., Zhang, X., Zhu, Y. and Desu, S. B., J.Appl.Phys., 83, 1610 (1998).Google Scholar
6. Wouters, D. J., Norga, G. J. and Maes, H. E., Mat.Res.Soc.Symp.Proc., 541, 381 (1999).Google Scholar
7. Desu, S. B., Mat.Res.Soc.Symp.Proc., 541, 457 (1999).Google Scholar
8. Fujisawa, H., Nakashima, S., Shimizu, M. and Niu, H., Mat.Res.Soc.Symp.Proc., 541, 327 (1999).Google Scholar
9. Fujisawa, H., Nakashima, S., Kaibara, K., Shimizu, M. and Niu, H., Jpn.J.Appl.Phys., 38,5392 (1999).Google Scholar
10. Shimizu, M., Nakashima, S., Kaibara, K., Fujisawa, H. and Niu, H., Ferroelectrics, (2000) (in press).Google Scholar
11. Yano, Y., Iijima, K., Daitoh, Y., Terashima, T., Bando, Y., Watanabe, Y., Kasatani, H. and Terauchi, H., J.Appl.Phys., 76, 7833 (1994).Google Scholar
12. Yanase, N., Abe, K., Fukushima, N. and Kawakubo, T., Jpn.J.Appl.Phys., 38, 5305 (1999).Google Scholar