Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T08:48:46.355Z Has data issue: false hasContentIssue false

Thermal Wave Analysis: A Tool for Non-Invasive Testing in Ion Beam Synthesis of Wide Band Gap Materials

Published online by Cambridge University Press:  15 February 2011

G. Teichert
Affiliation:
MFPA Weimar, Amalienstraße 13, D-99423 Weimar, Germany
L. Schleicher
Affiliation:
TU Ilmenau, Institut für Werkstofftechnik, PF 100565, D-98684 Ilmenau, Germany
Ch. Knedlik
Affiliation:
TU Ilmenau, Institut für Werkstofftechnik, PF 100565, D-98684 Ilmenau, Germany
M. Voelskov
Affiliation:
Forschungszentrum Rossendorf e.V., Institut für lonenstrahlphysik und Materialforschung, PF 510119, D-01314 Dresden, Germany
W. Skorupa
Affiliation:
Forschungszentrum Rossendorf e.V., Institut für lonenstrahlphysik und Materialforschung, PF 510119, D-01314 Dresden, Germany
R.A. Yankov
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, PF 100565, D-98684 Ilmenau, Germany
J. Pezoldt
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, PF 100565, D-98684 Ilmenau, Germany
Get access

Abstract

Photothermal methods provide a valuable complement to the destructive measurement techniques for the detection of the optimal process conditions in ion beam synthesis of wide band gap semiconductor compounds. In addition to their nondestructive and non contact qualities, they are highly sensitive to changes of thermophysical properties due to structural changes. Analyses have been carried out with (SiC)l-x(AIN)x compounds, formed by ion beam synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vitkin, I. A., Christofides, C., and Mandelis, A., J. Appl. Phys. 67, p. 2822 (1990).Google Scholar
2. Seas, A. and Christofides, C., Appl. Phys. Lett. 66, p. 3346 (1995).Google Scholar
3. Forget, B. C., Barbereau, I., Fournier, D., Tuli, S., and Battacharyya, A. B., Appl. Phys. Lett. 69, p. 1107 (1996).Google Scholar
4. Sawada, T., Gohshi, Y., Watanabe, T., and Furuga, K., Jpn. J. Appl. Phys., Part 1 24, p. L938 (1985).Google Scholar
5. Uchitomi, N., Mikami, H., Toyoda, N., and Nii, R., Appl. Phys. Lett. 52, p. 30 (1988).Google Scholar
6. Rosenczwaig, A., in Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by Mandelis, A. (Elsevier Science Publishers, New York, 1997), p. 97.Google Scholar
7. Muratikov, K.L. and Usov, I.O, Appl. Phys. Lett. 71, p. 3001 (1997).Google Scholar
8. Yankov, R.A., Hatzopoulos, N., Fukarek, W., Voelskov, M., Heera, V., Pezoldt, J., Skorupa, W., Mater. Res. Soc. Symp. Proc. 438, p. 271 (1997).Google Scholar
9. Pezoldt, J., Yankov, R. A., Miicklich, A., Fukarek, W., Voelskov, M., Reuther, H., Skorupa, W., Nucl. Instr. Meth. Phys. Res. B147, p 273 1999.Google Scholar
10. Fukarek, W., Yankov, R. A., Anwand, W., and Heera, V., Nucl. Instr. Meth. Phys. Res. B142, p. 561 (1998)Google Scholar
11. Voelskow, M, unpublished workGoogle Scholar
12. Geiler, H.-D., Karge, H., Kluge, A., Surface and Coatings Technology 66, p. 265 (1994).Google Scholar
13. Wagner, M., Geiler, H.-D., Meas. Sci. Technol. 2, p. 1088 (1991).Google Scholar
14. Wagner, M., Geiler, H.-D., Kowalski, P., Laser und Optoelektronik 26, p. 63 (1994).Google Scholar
15. Veinger, A. I., Il'in, V. A., Tairov, Yu. M., Tsvetkov, V. F., Fiz. Tech. Poluprovodn. 13, p. 2366 (1979).Google Scholar
16. Weißmantel, Ch., Hamann, C., Grundlagen der Festkörperphysik, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979, p. 689.Google Scholar
17. Glaser, E., Heft, A., Heindl, J., Kaiser, U., Bachmann, T., W.Wesch, Strunk, H.P., and Wendler, E., Inst. Phys. Conf. Ser. 142, p. 557 (1996).Google Scholar
18. Pirouz, P., and Hazeldine, P.M., Diffusion and Defect Data B35–B36, p. 183 (1994).Google Scholar