Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T06:15:00.913Z Has data issue: false hasContentIssue false

Thermal Desorption of Hydrogen in Si and Sic Nanoparticles Produced by Plasma-Enhanced Chemical-Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

J. Costa
Affiliation:
GRM, Universitat de Girona, Avda. Lluís Santaló s/n, E-17071 Girona, Catalonia, Spain
J. Fort
Affiliation:
GRM, Universitat de Girona, Avda. Lluís Santaló s/n, E-17071 Girona, Catalonia, Spain
J. J. Suñol
Affiliation:
GRM, Universitat de Girona, Avda. Lluís Santaló s/n, E-17071 Girona, Catalonia, Spain
P. Roura
Affiliation:
GRM, Universitat de Girona, Avda. Lluís Santaló s/n, E-17071 Girona, Catalonia, Spain
G. Viera
Affiliation:
Departament de Física Aplicada i Òptica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalonia, Spain
E. Bertran
Affiliation:
Departament de Física Aplicada i Òptica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalonia, Spain
Get access

Abstract

Mass spectrometry and calorimetry experiments on hydrogen evolution in amorphous Si:H and SiC:H nanoparticles grown by Plasma-Enhanced Chemical-Vapor Deposition (PECVD) are reported. The evolution spectra in a-Si particles are very similar to those found in films. The dynamic constants of the low-temperature peak confirm that this process is the same as in films. It is argued that the high-temperature process may not be diffusion-controlled. Both processes are exothermic, indicating that most dangling bonds recombine after H-desorption. The Hevolution in SiC occurs at higher temperatures than in Si. The process is endothermic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allan, D. and Joannopoulos, J. D., in The Physics of Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucowsky, G., Springer-Verlag, 1984, p. 52.Google Scholar
2. Beyer, W., Physica B 170 105 (1991).Google Scholar
3. Khait, Yu L., Weil, R., Beserman, R., Beyer, W., Wagner, H., Phys. Rev. B 42 9000 (1990).Google Scholar
4. Beyer, W. and Wagner, H., J. Appl. Phys. 53 8745 (1982).Google Scholar
5. Maass, F., Ph. D. Thesis, Universitat de Barcelona, 1991.Google Scholar
6. Welty, J. R., Wicks, Ch. E., Wilson, R. E., Fundamentals of momentum, heat and mass transfer, 3rd. Ed., Wiley, 1984, chap 18.Google Scholar
7. Beyer, W. and Zastrow, U., J. Non-cryst. Solids 164–166 289 (1993).Google Scholar
8. CRC Handbook of Chemistry and Physics, 78 ed, CRC Press, Boca Raton, 19971998.Google Scholar