Skip to main content Accessibility help
×
Home

Thermal Conductivity of Nickel Oxide Nanoparticles Synthesized by Combustion Method

  • Pranati Sahoo (a1), Dinesh Misra (a2), Girija Shankar Chaubey (a3), James Salvador (a4), Nathan J. Takas (a5) and Pierre F. P. Poudeu (a6)...

Abstract

Monodispersed nickel oxide nanoparticles have been synthesized using solution combustion synthesis method. Size of the nanoparticles was controlled by varying different reaction parameters such as reaction temperature and reaction time. Structure and morphology of the nanoparticles were investigated using X-ray diffraction and transmission electron microscopy. BET surface area of 99.7 m2/g was obtained for the nanoparticles synthesized at 300 °C. A decrease in surface area was observed with increase in reaction temperature. The nanoparticles were compacted using spark plasma sintering technique at 950 °C and thermal conductivity was studied on compacted sample. Significant decrease in thermal conductivity was observed for nanoparticles in compared to their bulk counter-part.

Copyright

References

Hide All
1 Ganguli, Ashok K., Ahmad, T., Vaidya, S. and Ahmed, J., Pure Applied Chemistry, 80 (11) 24512477 (2008).
2 Ahmed, T., Ganguli, Ashok K., Aparna Ganguly, J. Ahmed, Irshad A. Wani and S. Khatoon in Chemistry of Reverse Micelles: A Versatile Route to the Synthesis of Nanorods and Nanoparticles,(Proceedings of Materials Research Society, USA, DOI: 10.1557/PROC–1142–JJ05–59, 2009).
3 Ju, Seo Hee and Kang, Yun Chan, Material Research Bulletin, 43, 590600 (2008).
4 Zhang, H. and Swihart, Mark T., Chem. Mater. 19 (6), 12901301 (2007).
5 Patil, K. C., Aruna, S.T and Ekambaram, S., Current Opinion in Solid State & Materials Science 2, 158165 (1997).
6 Mukasyan, A.S. and Dinka, P., International Journal of Self-propagating High Temperature Synthesis 16, 2335 (2007).
7 Tahmasebi, K. and Paydar, M. H., Material Chemistry and Physics 109, 158163 (2008).
8 Jung, C. H., Jalota, S. and Bhaduri, S.B., Materials Letters, 59, 24262432 (2005).
9 Ianos, Robert, Lazãu, Ioan, Cornelia pãcurariu and Paul Barvinschi, Material Research Bulletin 43, 34083415 (2008)
10 Mukasyan, A. S., Epstein, P. and Dinka, Peter, Proceedings of the Combustion institute 31, 17891795 (2007).
11 Prakash, A. S., Khadar, A.M., Patil, K.C. and Hegde, M.S., Journal of Material Synthesis and Processing 10 (3), 135141 (2002)
12 Estellé, J., Salagre, P., Cesteros, Y., Serra, M., Medina, F. and Sueiras, J. E., Solid State Ionics 156, 233243 (2003).
13 Meneses, C.T., Flores, W. H., Garcia, F. and Sasaki, J.M, Journal of Nanoparticle Research 9, 501505 (2007)
14 Xiang, L., Deng, X.Y. and Jin, Y., Scripta Materiala 47, 219224 (2002).
15 Deng, Xiang Yi and Chen, Zhong, Material Letters 58, 276280 (2004).
16 Sietsma, J. R. A., Meeldijk, J. D., Breejen, J. P. den, Helder, M .V., Dillen, A. Jos van, Jongh, Petra E. de and Jong, K.P. de, Angew. Chem. Int. Ed. 46, 45474549 (2007).
17 Lewis, F. B. and Saunders, N. H., J. Phys. C: Solid State Phys. 6, 25252532 (1973).
18 Huang, X. Y., Xu, Z., Chen, L. D., Solid State Commun. 130, 181 (2004).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed