Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T21:24:22.420Z Has data issue: false hasContentIssue false

Synthetic Strategies for MOCVD Precursors for HTcS Thin Films

Published online by Cambridge University Press:  15 February 2011

Harry A. Meinema
Affiliation:
TNO-Institute of Applied Physics, Department of Inorganic Materials Chemistry, P.O. Box 595, 5600 AN Eindhoven, The Netherlands
Klaas Timmer
Affiliation:
TNO-Institute of Applied Physics, Department of Inorganic Materials Chemistry, P.O. Box 595, 5600 AN Eindhoven, The Netherlands
Hans L. Linden
Affiliation:
TNO-Institute of Applied Physics, Department of Inorganic Materials Chemistry, P.O. Box 595, 5600 AN Eindhoven, The Netherlands
Carel I. M. A. Spee
Affiliation:
TNO-Institute of Applied Physics, Department of Inorganic Materials Chemistry, P.O. Box 595, 5600 AN Eindhoven, The Netherlands
Get access

Abstract

In recent years much attention has been given world-wide to the development of suitable MOCVD precursors for the deposition of HTcS thin films. Synthetic research has been and is concentrated on the development of superior Ba-, Sr-, Ca- and Y-precursors. Most emphasis is given to the synthesis of thermally stable volatile barium compounds. Synthetic strategies are based on encapsulating the central metal atom, by use of multidentate ligand systems and/or bulky substituents. Most attention is given to the development of thermally stable volatile ß-diketonate complexes, fluorine-free and fluorine-substituted, with auxiliary ligands. Thermally stable monomeric complexes of fluorine-substituted ß-diketonates with polyethers are by far the most volatile Ba-, Sr-, and Ca-precursors presently available. Low melting Y(thd)3.L complexes where L is 4-Et- or 4-t-Bupyridine- N-oxide can be used as liquid yttrium MOCVD precursors at temperatures above 100°C. This paper gives a survey of the trends in recent research activity and developments in these areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hubert-Pfalzgraf, L. G., Appl. Organometal. Chem. 6 627 (1992).CrossRefGoogle Scholar
2. Caulton, K. G. and Hubert-Pfalzgraf, L. G., Chem. Rev. 90 969 (1990)CrossRefGoogle Scholar
3. Timmer, K. and Meinema, H. A., Inorg. Chim. Acta 187 99 (1991)CrossRefGoogle Scholar
4. Hanusa, T. P., Chem. Rev. 93 1023 (1993).Google Scholar
5. Gilliland, D. D., Hitchman, M. L., Thompson, S. C. and Cole-Hamilton, D. J., J. Phys. III. 2 1381 (1992).Google Scholar
6. Sato, H. and Sugawara, S., Inorg. Chem. 32 1941 (1993).Google Scholar
7. Hammond, G. S., Nonhebel, D. C. and Wu, C. H. S., Inorg. Chem. 2 73 (1963).Google Scholar
8. Fitzer, E., Oetzmann, H., Schmaderer, F. and Wahl, G., J. Phys. IV. C 2 713 (1991).Google Scholar
9. Gleizes, A., Medus, D. and Sans-Lenain, S., in Better Ceramics trough Chemistry V. M.R.S. Symp. Proc. 271 919 (1992).Google Scholar
10. Drozdov, A. A. and Trojanov, S. I., Polyhedron 11 2877 (1992).CrossRefGoogle Scholar
11. Berry, A. D., Holm, R. T., Fatemi, M. and Gaskil, D. K., J. Mater. Res. 5 1169 (1990).Google Scholar
12. Timmer, K., unpublished resultsGoogle Scholar
13. Kutznetsov, F. A., Igumenov, I. K. and Danilov, V. S., Physica C 185–189 1957 (1991).Google Scholar
14. Busch, H., Fink, A., Müller, A. and Samwer, K., Supercond. Sci. Technol. 6 42 (1993).Google Scholar
15. Turnipseed, S. B., Barkley, R. M. and Sievers, R. E., Inorg. Chem. 30 1164 (1991).Google Scholar
16. Matsuno, S., Uchikawa, F. and Yoshizaki, K., Jpn. J. Appl. Phys. 29 L947 (1990).CrossRefGoogle Scholar
17. Timmer, K., Spee, C. I. M. A., Mackor, A. and Meinema, H. A., Dutch Patent Appln 8901507; US Patent 5.248.787 (28 September 1993).Google Scholar
18. Buriak, J. M., Cheatham, L. K., Gordon, R. G., Graham, J. J. and Barron, A. R., Eur. J. Solid State Inorg. Chem., 29 43 (1992).Google Scholar
19. Belcher, R., Cranley, C. R., Majer, J. R., Stephen, W. I. and Uden, P. C., Anal. Chim. Acta 60 109 (1972).CrossRefGoogle Scholar
20. Vere, A. W., Mackey, K. J., Rodway, D. C., Smith, P. C. and Frigo, D. M., Angew. Chem. Adv. Mater. 101 1613 (1989).Google Scholar
21. Sing, R., Singha, S., Chou, P., Hsu, N. J., Radpour, F., Ullal, H. S. and Nelson, A. J., J. Appl. Phys. 66 6179 (1989).CrossRefGoogle Scholar
22. Purdy, A. P., Berry, A. D., Holm, R. T., Fatemi, M. and Gaskill, D. K., Inorg. Chem. 28 2799 (1989).Google Scholar
23. Bradley, D. C., Hasan, M., Hursthouse, M. B., Motevalli, M., Khan, O. F. Z., Pritchard, R. G. and Williams, J. O., J. Chem. Soc. Chem. Commun. 1992, 575.Google Scholar
24. Timmer, K., Spee, C. I. M. A., Mackor, A. and Meinema, H. A.,Inorg. Chim. Acta 190 109 (1991).CrossRefGoogle Scholar
25. van der Sluis, P., Spek, A. L., Timmer, K. and Meinema, H. A., Acta Crystallogr. Sect C 46 1741 (1990).Google Scholar
26. Gardiner, R., W.Brown, D., Kirlin, P. S. and Rheingold, A. L., Chem. Mater. 3 1053 (1991).CrossRefGoogle Scholar
27. Norman, J. A. T. and Pez, G. P., J.Chem.Soc.Chem.Commun. 1991, 971.CrossRefGoogle Scholar
28. R.Drake, S., Miller, S. A. S. and Williams, D. J., Inorg.Chem. 32 3227 (1993).CrossRefGoogle Scholar
29. Spee, C. I. M. A., van der Zouwen-Assink, E. A., Timmer, K., Mackor, A. and Meinema, H. A., J.Phys IV C 2 295 (1991).Google Scholar
30. Zhang, J. M., Wessels, B. W., Richeson, D. S., Marks, T. J., DeGroot, D. C. and Kannewurf, C. R.. J.Appl.Phys. 69 2743 (1991).Google Scholar
31. Schulz, D. L., Richeson, D. S., Malandrino, G., Neumayer, D., Marks, T. J.,DeGroot, D. C., Schindler, L. J., Hogan, T. and Kannewurf, C. R., Thin Solid Films 216 45 (1992).Google Scholar
32. Rosetto, G., Polo, A., Benetollo, F., Porchia, M. and Zanella, P., Polyhedron 11 979 (1992).Google Scholar
33. Miele, P., Foulon, J. D. and Hovnanian, N., Polyhedron 12 209 (1993).CrossRefGoogle Scholar
34. Drozdov, A., Kuzmina, N., Troyanov, S. and Martynenko, L., Mater. Sci. Eng. B 18 139 (1993).Google Scholar
35. Drake, S. R., Miller, S. A. S., Hursthouse, M. B. and Malik, K. M. A., Polyhedron 12 1621 (1993).CrossRefGoogle Scholar
36. Rees, W. S., Carris, M. W. and Hesse, W., Inorg.Chem. 30 4481 (1991)Google Scholar
37. Sato, R., Takahashi, K., Yoshino, M., Kato, H. and Oshima, S., Jpn.J.Appl.Phys. 32 1590 (1993).Google Scholar
38. Snezhko, N., Moroz, S. and Petchurova, P., Mater. Sci. Eng. B 18 230 (1993).Google Scholar
39. Rees, W. S., Caballero, C. R. and Hesse, W., Angew.Chem. 104 786 (1992).Google Scholar
40. Schulz, D. G., Hinds, B. J., Stern, C. L. and Marks, T. J., Inorg.Chem. 32 249 (1993).Google Scholar
41. Timmer, K. and Spee, C. I. M. A., Dutch Patent Appln. 93.799 NLGoogle Scholar
42. Timmer, K., Spee, C. I. M. A., Linden, H. and Meinema, H.A., to be published.Google Scholar