Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T13:01:22.730Z Has data issue: false hasContentIssue false

Synchrotron Radiation Studies of Magnetic Materials

Published online by Cambridge University Press:  21 February 2011

J. L. Erskine
Affiliation:
University of Texas, Department of Physics, Austin, Texas 78712
C. A. Ballentine
Affiliation:
University of Texas, Department of Physics, Austin, Texas 78712
Jose Araya-Pochet
Affiliation:
University of Texas, Department of Physics, Austin, Texas 78712
Richard Fink
Affiliation:
University of Texas, Department of Physics, Austin, Texas 78712
Get access

Abstract

New opportunities for research on magnetic materials are emerging as a result of quiet revolutions in several areas including: materials synthesis techniques, surface characterization capabilities, new magnetic sensitive detectors and spectroscopic techniques, improved synchrotron radiation instrumentation, and predictive modeling based on first principals calculations. This paper describes some of the more recent advances and assesses some of the new opportunities that are emerging in the field of magnetic materials research.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Recent developments in STM are described in J. Vac. Sci. Technol. 6 (1988). (Entire issue devoted to STM).Google Scholar
2. Brennan, S., Fuoss, P.H., Eisenberger, P., Phys. Rev. B33, 3678 (1986).Google Scholar
3. An extensive but not complete reference to electronic structure calculations for bulk ferromagnetic materials and their surfaces can be found in: Turner, A.M., Donoho, A.W., and Erskine, J.L., Phys. Rev. B29, 2986 (1984); and A.M. Turner and J.L. Erskine, Phys. Rev. B30, 6675 (1984).Google Scholar
4. Blugel, S., Weinert, M., and Dederichs, P.H., Phys. Rev. Lett. 60, 1077 (1988).Google Scholar
5. Fu, C.L., Freeman, A.J., and Oguchi, T., Phys. Rev. Lett. 54, 2700 (1985); A.J. Freeman and C.L. Fu, J. Appl. Phys. 61, 3356 (1987).Google Scholar
6. Tersoff, J. and Falicov, L.M., Phys. Rev. B26, 6186 (1982).Google Scholar
7. Gay, J.G. and Richter, R., Phys. Rev. Lett. 56, 2728 (1986); J. Appl. Phys. 61, 3362 (1987).Google Scholar
8. Araya-Pochet, Jose, Ballentine, C.A., and Erskine, J.L., Phys. Rev. B38, xxx (1988).Google Scholar
9. Stampanoni, M., Vaterlaus, A., Aeschlimann, M., and Meier, F., Phys. Rev. Lett. 59, 2483 (1987).Google Scholar
10. Koon, N.C., Jonker, B.T., Volkening, F.A., Krebs, J.J., and Prinz, G.A., Phys. Rev. Lett. 59, 2463 (1987).Google Scholar
11. Heinrich, B., Urquhart, K.B., Arrott, A.S., Cochran, J.F., Myrtle, K., and Purcell, S.T., Phys. Rev. Lett. 59, 1756 (1987).Google Scholar
12. Hodge, L.A., Moravec, T.J., Dunning, F.B., and Walters, G.K., Rev. Sci. Instrum. 50, 5 (1979); F.B. Dunning, L.G. Gray, J.M. Ratliff, F.-C. Tang, X. Zhang, and G.K. Walters, Rev. Sci. Instrum. 58, 1706 (1987).Google Scholar
13. Krischner, J. and Reder, R., Phys. Rev. Lett. 47, 1008 (1979)Google Scholar
14. Unguris, J., Pierce, D.T., and Celotta, R.J., Rev. Sci. Instrum. 57, 1314 (1986).Google Scholar
15. Anacker, D. and Erskine, J. L., Nucl. Instrum. Methods A266, 336 (1988).CrossRefGoogle Scholar
16. Ovrebo, G. K. and Erskine, J. L., J. Electron Spectros. Rel. Phenom. 24, 189 (1981); H. A. Stevens, A. M. Turner, A. W. Donoho, and J. L. Erskine, J. Electron Spectros. Rel. Phenom. 32, 327 (1983).Google Scholar
17. Johnson, P. D., Clark, A, Brooks, N. B., Hulbert, S. L., Sinkovic, B. and Smith, N. V., Phys. Rev. Lett. 61, 2257 (1988).CrossRefGoogle Scholar