Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T14:07:31.407Z Has data issue: false hasContentIssue false

Surface Interactions of Actinide Ions with Geologic Materials Studied by XAFS

Published online by Cambridge University Press:  10 February 2011

E. R. Sylwester
Affiliation:
Glenn T. Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, L-231, P.O. Box 808, Livermore, CA 94551, USA
E. A. Hudson
Affiliation:
Glenn T. Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, L-231, P.O. Box 808, Livermore, CA 94551, USA
P. G. Allen
Affiliation:
Glenn T. Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, L-231, P.O. Box 808, Livermore, CA 94551, USA
Get access

Abstract

We have investigated the interaction of the actinyl ion, , with silica, alumina, and montmorillonite surfaces under ambient atmosphere and aqueous conditions using x-ray Absorption Fine Structure (XAFS) Spectroscopy. In acid solution (pH ∼ 3.5), the uranyl ion shows a strong interaction with the silica and alumina surfaces, and a relatively weak association with the montmorillonite surface. The extent of direct surface interaction is determined by comparing structural distortions in the equatorial bonding environment of the uranyl ion relative to the structure of a “free” uranyl aquo complex. Based on this formalism, surface complexation on silica and alumina occurs through an inner-sphere mechanism with surface oxygen atoms binding directly to the equatorial region of the uranyl ion. In contrast, sorption on montmorillonite occurs by an outer sphere mechanism in which the uranyl ion retains the simple aquo complex structure and binds to the surface via ion-exchange. In near-neutral solutions (pH ∼ 6), sorption on all of the materials is dominated by an inner-sphere mechanism. The formation of surface oligomeric species is also observed on silica and alumina.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Duff, M. C., Amrhein, C., Soil Sci. Soc. Ami. J. 60, 1393 (1996).10.2136/sssaj1996.03615995006000050014xGoogle Scholar
[2] Duff, M.C., Amrhein, C., Bertsch, P. M., Hunter, D. B., Geochim. Cosmochim. Acta 61(1), 73 (1997).10.1016/S0016-7037(96)00330-4Google Scholar
[3] Giaquinta, D. M., Soderholm, L., Yuchs, S. E., Wasserman, S. R., Radiochim. Acta 76, 113 (1997).10.1524/ract.1997.76.3.113Google Scholar
[4] Hudson, E. A., Terminello, L. J., Viani, B. E., Denecke, M., Reich, T., Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M. Clays & Clay Min (accepted December 1998).Google Scholar
[5] Jones, D. J., Roziere, J., Allen, G. C., Tempest, P. A., J. Chem. Phys. 84(11), 6075 (1986).10.1063/1.450795Google Scholar
[6] Payne, T. E., Davis, J. A., Waite, T. D., Radiochim. Acta 74, 239 (1996).10.1524/ract.1996.74.special-issue.239Google Scholar
[7] Sturclio, N. C., Antonio, M. R., Soderholim, L., Sutton, S. R., Brannon, J. C., Science 281, 971 (1998).10.1126/science.281.5379.971Google Scholar
[8] Ticknor, K. V., Radiochin. Acta 64, 22 (1994).Google Scholar
[9] Dent, A. J., Ramsay, J. D., Swanton, S. W., J. Coll. Int. Sci. 150, 45 (1992)10.1016/0021-9797(92)90267-PGoogle Scholar
[10] Piron, E., Accominotti, M., Domard, A., Langmuir 13, 1653 (1997).10.1021/la960765dGoogle Scholar
[11] McKinley, J. P., Zachara, J. M., Smith, S. C., Turner, G. D., Clays & Clay Min., 43, 586 (1995).10.1346/CCMN.1995.0430508Google Scholar
[12] Reich, T., Moll, H., Denecke, A., Geipel, G., Bernhard, G., Mitche, H, Allen, P. G., Bucher, J. J., Kaltsoyannis, N., Edelstein, N. M., Shuh, D. K., Radiochim. Acta 74, 219 (1996).10.1524/ract.1996.74.special-issue.219Google Scholar
[13] Thompson, H. S., Brown, G. E. Jr, Parks, G. A., Am. Min. 82, 483 (1997).10.2138/am-1997-5-607Google Scholar
[14] Waite, T. D., Davis, J. A., Payne, T. E., Waychunas, G. A., Xu, N., Geochim. Cosmochim. Acta 58, 5465 (1994).10.1016/0016-7037(94)90243-7Google Scholar
[15] Wasserman, S. R., Giaquinta, D. M., Yuchs, S.E., Soderholm, L., Mat. Res. Soc. Symrp. Proc. 465, 473 (1997).10.1557/PROC-465-473Google Scholar
[16] Reich, T., Moll, H., Arnold, T., Denecke, M. A., Hennig, C., Geipel, G., Bernhard, G., Nitsche, H., Allen, P. G., Edelstein, N. M., Shuh, D. K., J. Elec. Spec. & Rel. Phen. 96, 237 (1998).10.1016/S0368-2048(98)00242-4Google Scholar
[17] Chisholm-Brause, C., Conradson, S. D., Buscher, C. T., Eller, P. G., Morris, D.E., Geochim. Cosmochinm. Acta., 58, 3625 (1994)10.1016/0016-7037(94)90154-6Google Scholar
[18] Prikryl, J D., Pabalan, R. T., Turner, D. R., Leslie, B. W., Radiochim. Acta 66/67, 291 (1994).10.1524/ract.1994.6667.special-issue.291Google Scholar
[19] Michard, P., Guibal, E., Vincent, T., Le Cloirec, P., Microp. Mat. 5, 309 (1996).10.1016/0927-6513(95)00067-4Google Scholar
[20] Arnold, T., Zort, T., Bernhard, G., Nitsche, H., Chem. Geo. 151, 129 (1998).10.1016/S0009-2541(98)00075-8Google Scholar
[21] Pabalan, R. T., Turner, D. R., Aq. Geochem. 2, 203 (1997).10.1007/BF00119855Google Scholar
[22] Pabalan, R. T., Turner, D. R., Bertetti, F. P., Prikryl, J. D., in: Adsorption of Metals by Geomedia, editedy by Jenme, E., Academic Press (1998).Google Scholar
[23] McKinley, J. P., Smith, S. C., Zachara, J. M., Berg, J. M., Chisholm-Brause, C. J., Morris, D. C. Env. Sci. & Tech, accepted 1998.Google Scholar
[24] Tsunashima, A., Brindley, G. W., Bastovano, M., Clays & Clay Min., 29, 10 (1981).10.1346/CCMN.1981.0290102Google Scholar
[25] Zachara, J. M., McKinley, J. P. Aq. Sci. 55, 250 (1993).10.1007/BF00877270Google Scholar
[26] Keller-Besrest, F., Bénazeth, S., Souleau, Ch., Mat. Let. 24, 17 (1995).10.1016/0167-577X(95)00086-0Google Scholar
[27] Van Olphen, H., Fripiat, J. J., Data handbookfor Clay Minerals and Other Non-Metallic Materials, (Pergamon, 1979).Google Scholar
[28] Petiau, J., Calas, G., Petitimaire, D., Bianconi, A., Benfatto, M., Marcelli, A., Phys. Rev. B, 34, 7350 (1986).10.1103/PhysRevB.34.7350Google Scholar
[29] Prins, R., Koningsberger, D. E., eds., x-ray Absorption: Principles, Applications, Techniques for EXAFS, SEXAFS, and XANES (Wiley-Interscience, 1988).Google Scholar
[30] Mustre de Leon, J., Rehr, J. J., Zabinsky, S., Albers, R. C., Phys. Rev. B 44, 4146 (1991).10.1103/PhysRevB.44.4146Google Scholar
[31] Ravel, B. (1996): “ATOMS, a program to generate atom lists for XAFS analysis from crystallographic data.” University of Washington, Seattle, WA.Google Scholar
[32] Allen, P. G., Shuh, D. K., Bucher, J. J., Edelstein, N. M., Palmer, C. E. A., Silva, R. J., Nguyen, S. N., Marquez, L. N., Hudson, E. A., Radiochim. Acta 75, 47 (1996).10.1524/ract.1996.75.1.47Google Scholar
[33] Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., Reich, T., Inorg. Chem. 36, 4676 (1997).10.1021/ic970502mGoogle Scholar
[34] Allen, P. G., Shuh, D. K., Bucher, J. J., Edelstein, N. M., Reich, T., Denecke, A., Nitsche, H., Inorg. Chem. 35, 784 (1996).10.1021/ic9508536Google Scholar
[35] Bertram, S., Kaindl, G., Jove, J., Pages, M., Gal, J., Phys. Rev. Lett. 63, 2680 (1989).10.1103/PhysRevLett.63.2680Google Scholar
[36] Farges, F., Ponader, C. W., Calas, G., Brown, G. E. Jr, Geochim. Cosmochim. Acta 56,4205 (1992).10.1016/0016-7037(92)90261-GGoogle Scholar
[37] Kalwolski, G., Kaindl, G., Brewer, W. D., Krone, W., Phys. Rev. B 35, 2667 (1987).Google Scholar
[38] Allen, P. G., Bucher, J. J., Clark, D. L., Edelstein, N. M., Ekberg, S. A., Gohdes, J. W., Hudson, E. A., Kaltsoyannis, N., Lukens, W. W., Neu, M. P., Palmer, P. D., Reich, T., Shuh, D. K., Tait, C. D., Zwick, B. D., Inorg. Chem., 34, 4797 (1995).10.1021/ic00123a013Google Scholar
[39] Thompson, H. S., Parks, G. A., Brown, G. E. Jr, in Adsorption of Metals by Geomedia, edited by Jenne, E. A., Chap. 16, pp 349370 (Academic Press, 1998).10.1016/B978-012384245-9/50017-7Google Scholar