Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T22:46:01.941Z Has data issue: false hasContentIssue false

Study of the Structure and Energy of Grain Boundaries Using an Lmto Based Tight-Binding Method

Published online by Cambridge University Press:  26 February 2011

Yoonsik Oh
Affiliation:
Department of Physics and #Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U. S. A.
V. Vitek
Affiliation:
Department of Physics and #Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U. S. A.
Get access

Abstract

A parametrized tight-binding (TB) method based on the TB-UMTO approach in the atomic sphere approximation (ASA) [26] has been developed. The Hamiltonian is written in terms of the canonical structure matrix and potential parameters. The former is for a given configuration of atoms evaluated using a Dyson-type equation and the latter are those found self-consistently for the ideal lattice. A warping correction has been added to the scheme to be able to account for the effects of local straining which can not be included in the ASA. This is essential for applications in defect studies. Using this method the structure and energy of the ∑ = 5 [001] twist boundary in copper has been calculated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sutton, A. P., Int. Metals Reviews 29, 377 (1984).Google Scholar
2. Vitek, V., in Dislocations 1984, edited by Veyssiere, P., Kubin, L. and Castaign, J. (CNRS Press, Paris, 1984), p. 435.Google Scholar
3. Bristowe, P. D., in Grain Boundary Structure and Related Phenomena, Trans. Japan Inst. Metals 27, 89 (1986).Google Scholar
4. Balluffi, R. W., Ruhle, M. and Sutton, A. P., Mat. Sci. Eng. 89, 1 (1987).CrossRefGoogle Scholar
5. Vitek, V., in Dislocations and Properties of Real Materials, edited by Loretto, M. H. (The Institute of Metals, London, 1985), p. 30.Google Scholar
6. Duesbery, M. S., in Dislocations in Solids, edited by Nabarro, F. R. N. (North Holland, Amsterdam, 1988), to be published.Google Scholar
7. Johnson, R. A. and Beeler, J. R., in Interatomic Potentials and Lattice Defects, edited by Lee, J. K. (TMS, Warrendale, Pennsylvania,1981), p. 165 Google Scholar
8. Vitek, V. and DeHosson, J. Th. M., in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by Broughton, J., Krakow, W. and Pantelides, S. T. (Mater. Res. Soc. Proc. 63, Pittsburgh, PA, 1986) p. 137.Google Scholar
9. Kohn, W. and Sham, L. J., Phys. Rev. A 140, 113 (1965).CrossRefGoogle Scholar
10. Chelikowsky, J. R. and Spence, J. C. H., Phys. Rev. B 30, 694 (1984).CrossRefGoogle Scholar
11. Payne, M. C., Bristowe, P. D. and Joannopoulos, J. D., Phys. Rev. Lett. 58, 1348 (1987).CrossRefGoogle Scholar
12. Louie, S. G., J. Phys. Paris 46, C4335 (1985).CrossRefGoogle Scholar
13. Freeman, A. J., Fu, C. L. and Oguchi, T.,in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by Broughton, J., Krakow, W. and Pantelides, S. T. (Mater. Res. Soc. Proc. 63, Pittsburgh, PA, 1986) p. 1.Google Scholar
14. Heine, V., Haydock, R., Bullett, D. W. and Kelly, M. J., in Solid State Physics Vol.35, edited by Ehrenreich, H., Seitz, F. and Turnbull, D. (Academic Press, New York, 1980), p. 1.Google Scholar
15. Harrison, W. A., Electronic Structure and Properties of Solids Freeman, San Francisco, 1980.Google Scholar
16. Pettifor, D. G., J. Phys. F: Metal Phys. 2, 613 (1977); in Physical Metallurgy, edited by R. W. Cahn and P. Haasen (North-Holland, Amsterdam, 1983), p. 73.CrossRefGoogle Scholar
17. Ducastelle, F., J. Phys. Paris 31, 1055 (1970).Google Scholar
18. Pettifor, D. G., in Solid State Physics Vol. 40, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1987) p. 43.Google Scholar
19. Chadi, D. J. and Cohen, M. L., Phys. Stat. Sol. (b) 68, 405 (1975).CrossRefGoogle Scholar
20. Chadi, D. J., Phys. Rev. B 19, 2074 (1979); J. Vac. Sci. Technol. 16, 1290 (1979).CrossRefGoogle Scholar
21. Thomson, R. E. and Chadi, D. J., Phys. Rev. B 29, 889 (1984).CrossRefGoogle Scholar
22. Paxton, A. T., Sutton, A. P. and Nex, C. M. M., J. Phys. C: Solid State Phys. 20, L263 (1987).CrossRefGoogle Scholar
23. Sutton, A. P., Finnis, M. W., Pettifor, D. G. and Ohta, Y., J. Phys. C: Solid State Phys. 21, 35 (1988).CrossRefGoogle Scholar
24. Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1950).CrossRefGoogle Scholar
25. Papaconstantopoulos, D. A., Handbook of the Band Structure of Elemental Solids, Plenum Press, New York, 1986.Google Scholar
26. Andersen, O. K., Jepsen, O. and Glotzel, D., in Highlights of Condensed Matter Theory, edited by Bassani, F., Fumi, F. and Tosi, M. P. (North-Holland, Amsterdam, 1985), p. 59.Google Scholar
27. Andersen, O. K., Jepsen, O. and Sob, M., in Electronic Band Structure and its Applications, edited by Yussouff, M. (Springer, Berlin, 1987), p. 1.Google Scholar
28. Bristowe, P. D. and Crocker, A. G., Phil. Mag. A 38, 487 (1978).CrossRefGoogle Scholar
29. Oh, Yoonsik and Vitek, V., Acta Metall. 34, 1941 (1986).CrossRefGoogle Scholar
30. Oh, Yoonsik, PhD Thesis, University of Pennsylvania, 1988.Google Scholar
31. Moruzzi, V. L., Janak, J. F. and Williams, A. R., Calculated Electronic Properties of Metals, Pergamon Press, New York, 1978.Google Scholar
32. Chang, Y. A. and Himmel, L., J. Appl. Phys. 37, 3567 (1966).CrossRefGoogle Scholar
33. Ackland, G. J., Tichy, G., Vitek, V. and Finnis, M. W., Phil. Mag. A 56, 735 (1987).CrossRefGoogle Scholar
34. Budai, J., Bristowe, P. D. and Sass, S. L., Acta Metall. 31 (1983).CrossRefGoogle Scholar