No CrossRef data available.
Published online by Cambridge University Press: 22 May 2014
The structures and electronic properties of graphene with defects consisting of one to six atomic vacancies are investigated using first-principles calculation. All of the geometrically possible initial structures of a movacancy or a multivacancy in graphene are equilibrated. The formation energies and electronic band structures for the equilibrated defective structures are calculated. It is suggested non-zero bandgaps may be induced in graphene by introducing some types of monovacancy or multivacancy although further checks regarding supercell size are necessary to ensure the present results.