Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T14:30:48.346Z Has data issue: false hasContentIssue false

Strong Enhancement of Bending-Mode Magnetoelectric Effect by Layer Sequence Choice in Thin Film Bilayer Composites on a Substrate

Published online by Cambridge University Press:  29 April 2014

Matthias Krantz
Affiliation:
Institute of Electrical and Information Engineering, University of Kiel, 24143 Kiel, Germany
Jascha Lukas Gugat
Affiliation:
Institute of Electrical and Information Engineering, University of Kiel, 24143 Kiel, Germany
Martina Gerken
Affiliation:
Institute of Electrical and Information Engineering, University of Kiel, 24143 Kiel, Germany
Get access

Abstract

Magnetoelectric (ME) effects in bilayer composite cantilevers of magnetostrictive (MS) and piezoelectric (PE) materials on a substrate (Sub) are investigated theoretically for the FeCoBSi-AlN-Si system in open circuit mode and compared for different MS-PE-Sub layer thickness ratios and layer sequence choices. Static and resonant magnetic field excitations, the latter with resonance-enhanced cantilever oscillation, are investigated. Greatly differing behavior of the ME response with layer thicknesses is found for alternate layer sequences and excitation modes with the greatest resonant ME effect for the MS and PE layers on opposite sides of the substrate and the highest static effect for non-central substrates. The unexpected layer sequence systematics of the ME response are explained by the behaviour of the neutral (zero strain) plane in the strain coupled elastic layer stack.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fiebig, M., Journal of Physics D38, R123 (2005)Google Scholar
Nan, C.W.. Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G., J.Appl.Phys.103, 031101 (2008)10.1063/1.2836410CrossRefGoogle Scholar
Eerenstein, W., Mathur, N. D., and Scott, J. F., Nature Reviews 442, 759 (2006)Google Scholar
Velev, J. P., Jaswal, S.S., and Tsymbal, E.Y., Phil. Trans. R. Soc. A 369, 3069 (2011)10.1098/rsta.2010.0344CrossRefGoogle Scholar
Folen, V. J. and Rado, G. T., Phys. Rev. Lett. 6, 607 (1961)10.1103/PhysRevLett.6.607CrossRefGoogle Scholar
Ebnabbasi, K., Vittoiria, C., and Widom, A., Phys. Rev. B 86, 024430 (2012)10.1103/PhysRevB.86.024430CrossRefGoogle Scholar
Duan, C. G., Jaswal, S. S., Tsymbal, E. Y.. Phys. Rev. Lett. 97, 047201 (2006)10.1103/PhysRevLett.97.047201CrossRefGoogle Scholar
Bichurin, M.I., Petrov, V.M., and Srinivasan, G., Phys. Rev. B 68, 1 (2003)Google Scholar
Wan, J. G., Li, Z. Y., Wang, Y., Zeng, M., Wang, G. H., and Liu, J. M., Appl. Phys. Lett. 86, 202504 (2005)10.1063/1.1935040CrossRefGoogle Scholar
Tiercelin, N., Preobrazhensky, V., Pernod, P., and Ostaschenko, A.. Appl. Phys. Lett. 92, 062904 (2008)10.1063/1.2841656CrossRefGoogle Scholar
Blackburn, J.F., Vopsaroiu, M.. Cain, M.G., J. Appl. Phys. 104, 074104 (2008)10.1063/1.2988183CrossRefGoogle Scholar
Guo, M. and Dong, S., IEEE Trans. Ultras. Ferroelectr. Freq. Contr. 56, 2578 (2009)Google Scholar
Petrov, V.M., Srinivasan, G., Bichurin, M.I., Galkina, T.A.. J.Appl. Phys. 105, 063911 (2009)10.1063/1.3087766CrossRefGoogle Scholar
Greve, H., Woltermann, E., Jahns, R., Marauska, S., Wagner, B., Knöchel, R., Wuttig, M., and Quandt, E., Appl. Phys. Lett. 97, 152503 (2010)10.1063/1.3497277CrossRefGoogle Scholar
Zhao, P., Zhao, Z., Hunter, D., Suchoski, R., Gao, C., Mathews, S., Wuttig, M., and Takeuchi, I.. Appl. Phys. Lett. 94, 243507 (2009)10.1063/1.3157281CrossRefGoogle Scholar
Marauska, S., Hrkac, V., Dankwort, T., Jahns, R., Quenzer, H. J., Knöchel, R., Kienle, L., and Wagner, B. Microsyst. Technol. 18, 787 (2012)10.1007/s00542-012-1493-1CrossRefGoogle Scholar
Kirchhof, C., Krantz, M. C., Teliban, J., Jahns, R., Marauska, S., Wagner, B., Knöchel, R., Gerken, M., Meyners, D., and Quandt, E., Appl. Phys. Lett 102, 232905 (2013)10.1063/1.4810750CrossRefGoogle Scholar
Hasanyan, D., Gao, J., Wang, Y., Viswan, R., Li, M., Shen, Y., Li, J., and Viehland, D., J. Appl. Phys. 112, 013908 (2012)10.1063/1.4732130CrossRefGoogle Scholar
Krantz, M. C. and Gerken, M., AIP Advances 3, 022103 (2013)10.1063/1.4790630CrossRefGoogle Scholar
Krantz, M. C. and Gerken, M., AIP Advances 3, 052131 (2013)10.1063/1.4808204CrossRefGoogle Scholar
Krantz, M. C., Gugat, J.L. and Gerken, M., AIP Advances 3, 062135 (2013)10.1063/1.4812873CrossRefGoogle Scholar