No CrossRef data available.
Published online by Cambridge University Press: 29 April 2014
Magnetoelectric (ME) effects in bilayer composite cantilevers of magnetostrictive (MS) and piezoelectric (PE) materials on a substrate (Sub) are investigated theoretically for the FeCoBSi-AlN-Si system in open circuit mode and compared for different MS-PE-Sub layer thickness ratios and layer sequence choices. Static and resonant magnetic field excitations, the latter with resonance-enhanced cantilever oscillation, are investigated. Greatly differing behavior of the ME response with layer thicknesses is found for alternate layer sequences and excitation modes with the greatest resonant ME effect for the MS and PE layers on opposite sides of the substrate and the highest static effect for non-central substrates. The unexpected layer sequence systematics of the ME response are explained by the behaviour of the neutral (zero strain) plane in the strain coupled elastic layer stack.