Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-19T03:48:15.020Z Has data issue: false hasContentIssue false

Stm Studies at Electrochemically Controlled Interfaces

Published online by Cambridge University Press:  21 February 2011

S.M. Lindsay
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
J. Pan
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
T.W. Jing
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
Get access

Abstract

We use electrochemical methods to control the adsorption of molecules onto an electrode for imaging in-situ by scanning tunneling microscopy. Measurements of the barrier for electron tunneling show that the mechanism of electron transfer differs from vacuum tunneling. Barriers depend upon the direction of electron tunneling, indicating the presence of permanently aligned dipoles in the tunnel gap. We attribute a sharp dip in the barrier near zero field to induced polarization. We propose a ‘tunneling’ process consisting of two parts: One is delocalization of quantum-coherent states in parts of the molecular adlayer that hybridize strongly (interaction ≥ kT) with Bloch states in the metal. This gives rise to a quantum-point-contact conductance, Gc ≤ 2e2/h at a height zo. The other part comes from the exponential decay of the tails of localized states, G = Gc exp{−2K(z − z0)}. Because measured decay lengths, (2K‘)−1, are small (≈ 1 Å), STM contrast is dominated by the contour along which G[z0 (x,y)] = Gc. Measured changes in z0 are used to calculate images which are in reasonable agreement with observations. We illustrate this with images of synthetic DNA oligomers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sonnenfeld, R. and Hansma, P. K., Science 232, 211 (1986).CrossRefGoogle Scholar
2. Liu, H.-Y., Fan, F. R. F., Lin, C. W. and Bard, A. J., J. Am. Chem. Soc. 108, 3838 (1986).Google Scholar
3. Seigenthaler, H. in Scanning Tunneling Microscopy II edited by Wiesendanger, R. and Güntherodt, H. J. (Springer-Verlag, Berlin, 1992) p.7.Google Scholar
4. Bard, A. and Fan, F. R. F. in Scanning Tunneling Microscopy, Theory, techniques and Applications edited by Bonnell, D. A. (VCH, New York, 1993) p.287.Google Scholar
5. Pan, J., Jing, T. W. and Lindsay, S. M., J. Phys. Chem. (1993), submitted.Google Scholar
6. Lindsay, S. M. and , Barris, J. Vac. Sci. Tech. A 6, 544 (1988).Google Scholar
7. Lindsay, S. M., Thundat, T., Nagahara, L. A., Knipping, U. and Rill, R. L., Science 244, 1063 (1989).CrossRefGoogle Scholar
8. Chen, C. J., Introduction to Scanning Tunneling Microscopy, (Oxford University Press, NY., 1993).Google Scholar
9. Beebe, T. P., Wilson, T. E., Ogletree, D. F., Katz, J. E., Balhorn, R., Salmeron, M. B. and Siekhaus, W. J., Science 243, 370 (1989).Google Scholar
10. Driscoll, R. J., Youngquist, M. G. and Baldeschweiler, J. D., Nature 346, 294 (1990).Google Scholar
11. Clemmer, C. R. and Beebe, T. P., Science 251, 640 (1991).Google Scholar
12. Heckl, W. M. and Binnig, G., Ultramicroscopy 42–44, 1073 (1992).Google Scholar
13. Dunlap, D. D., Garcia, R., Schabtach, E. and Bustamante, C., Proc. Natl. Acad. Sci. (USA) (1993) in press.Google Scholar
14. Lindsay, S. M., Tao, N. J., DeRose, J. A., Oden, P. I., Lyubchenko, Y. L., Harrington, R. E. and Shlyakhtenko, L., Biophysical Journal 61, 1570 (1992).Google Scholar
15. Jing, T., Jeffrey, A. M., DeRose, J. A., Lyubchenko, Y. L., Shlyakhtenko, L. S., Harrington, R. E., Appella, E., Larsen, J., Vaught, A., Rekesh, D., Lu, F. X. and Lindsay, S. M., Proc. Natl. Acad. Sci. (USA) 90, 8934 (1993).Google Scholar
16. Jeffrey, A. M., Jing, T. W., DeRose, J. A., Vaught, A., Rekesh, D., Lu, F. X. and Lindsay, S. M., Nucleic Acids Research (1993) in press.Google Scholar
17. Stuve, E. M. and Kizhakevariam, N., J. Vac. Sci. Technol (1993) in press.Google Scholar
18. Binnig, G., Rohrer, H., Gerber, C. and Weibel, E., Physica 109/110B, 2075 (1982).Google Scholar
19. Lang, N. D., Phys. Rev. B 36, 8173 (1987).Google Scholar
20. Kalmeyer, V. and Laughlin, R. B., Phys. Rev. B35, 9805 (1987).Google Scholar
21. Binnig, G., Garcia, N., Rohrer, H., Soler, J. M. and Flores, F., Phys. Rev. B 30, 4816 (1984).Google Scholar
22. Schuster, R., Barth, V., Wintterlin, J., Behm, R. J. and Ertl, G., Ultramicroscopy 42–44, 533 (1992).Google Scholar
23. Gimzewski, J. K. and Möller, R., Phys. Rev. B 36, 1284 (1987).Google Scholar
24. Wintterlin, J., Wiechers, J., Brune, H., Gritsch, T., Hofer, H. and Behm, R. J., Phys. Rev. Lett. 62, 59 (1989).Google Scholar
25. DeAndres, P., Flores, F., Echenique, P. M. and Ritchie, R. H., Europhys. Lett. 3, 101 (1987).CrossRefGoogle Scholar
26. Schmickler, W. and Henderson, D., J. Electroanal. Chem. 290, 283 (1990).Google Scholar
27. Binggeli, M., Carnal, D., Nyffenegger, R. and Seigenthaler, H., J. Vac. Sci. Technol. B 9, 1985 (1991).Google Scholar
28. Coombs, J. H. and Pethica, J. B., IBM J. Res. Dev. 30, 455 (1986).Google Scholar
29. Lindsay, S. M., Thundat, T. and Nagahara, L. in Biological and Artificial Intelligence Systems edited by Clementi, E. and e. Chin, H.S. (ESCOM, Leiden, 1988) p. 124.Google Scholar
30. Lindsay, S. M., Thundat, T. and Nagahara, L. A., J. Microscopy 152, Pt 1, 213 (1988).CrossRefGoogle Scholar
31. Eigler, D. M., Weiss, P. S., Schweizer, E. K. and Lang, N. D., Phys. Rev. Lett. 66, 1189 (1991).Google Scholar
32. Sautet, P. and Joachim, C., Ultramicroscopy 42–44, 115 (1992).Google Scholar
33. Fisher, A. J. and Blöchl, P. E. in Computations for the Nanoscale, NATO ARW (1993) in press.Google Scholar
34. Fisher, A. J. and Blöchl, P. E., Phys. Rev. Lett. 70, 3263 (1993).Google Scholar
35. Lindsay, S. M., Sankey, O. F., Li, Y. and Herbst, C., J. Phys. Chem. 94, 4655 (1990).Google Scholar
36. , Sumetskii, J. Phys.: Condensed Matter 3, 2651 (1991).Google Scholar
37. Lindsay, S. M., Sankey, O. F. and Schmidt, K. E., Comments on Mol. Cell. Biophys. A7, 109 (1991).Google Scholar
38. Landauer, R., Philosophical Magazine 21, 863 (1970).Google Scholar
39. Fulde, P., Electron correlations in molecules and solids, (Springer-Verlag, Berlin, 1991).Google Scholar
40. Stone, A. D. and Lee, P. A., Phys. Rev. Lett. 54, 1196 (1985).Google Scholar
41. Hyldgaard, P. and Jauho, A. P., J. Phys: Condensed Matter 2, 8725 (1990).Google Scholar
42. Stockman, M. I., Muratov, L. S., Pandey, L. N. and George, T. F., Phys. Rev. B45, 8550 (1992).Google Scholar
43. Tersoff, J. and Hamann, D. R., Physical Review B 31, 805 (1985).Google Scholar
44. Rhodes, D. and Klug, A., Nature 286, 573 (1980).Google Scholar