Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:29:59.820Z Has data issue: false hasContentIssue false

Smoothing Surfaces by an AC Field: An Application of the Ratchet Effect

Published online by Cambridge University Press:  10 February 2011

C.-S. Lee
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
I. Derényi
Affiliation:
Dept. of Surgery, MC 6035, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
A.-L. Barabási
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
Get access

Abstract

We demonstrate that for surfaces that have a nonzero Schwoebel barrier, the application of an ac field parallel to the surface will induce a net electromigration current. Most important, the direction of the net current will be always downhill; i.e. it will point in the step-down direction. The magnitude of this equilibrium current is calculated analytically, and compared with Monte Carlo simulations. A downhill current is known to smooth the surface, thus we suggest that the application of ac fields during annealing might aid the smoothing process and during growth it has the potential to slow or eliminate the Schwoebel barrier induced mound formation

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Villain, J., J. Phys. I 1, 19 (1991); M. D. Johnson et al., Phys. Rev. Lett. 72, 116 (1994); J. A. Stroscio, D. T. Pierce, M. D. Stiles, A. Zangwill, and L. M. Lander, Phys. Rev. Lett. 75, 4246 (1995); J.-K. Zuo and J. F. Wendelken, Phys. Rev. Lett. 78, 2791 (1997); for a review, see A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth(Cambridge University Press, Cambridge, 1995).Google Scholar
[2] Ajdari, A. and Prost, J., C. R. Acad. Sci. Paris 315, 1635 (1992); M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993); R. D. Astumian and M. Bier, Phys. Rev. Lett. 72, 1766 (1994); J. Prost, J.-F. Chauwin, and L. Peliti A. Ajdari, Phys. Rev. Lett. 72, 2652 (1994); C. R. Doering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett. 72, 2984 (1994); R. D. Astumian, Science 276, 917 (1997).Google Scholar
[3] Derényi, I., Lee, C.-S. and Barabási, A.-L., Phys. Rev. Lett. 80, 1473 (1998).Google Scholar
[4] Schwoebel, R. L., J. Appl. Phys. 40, 614 (1996); S. Kodiyalam, K.E. Khor, and S. Das Sarma, Phys. Rev. B 53, 9913 (1996).Google Scholar
[5] Yasunaga, H. and Natori, A., Surf. Sci. Rep. 15, 205 (1992); M. Ichikawa and T. Doi, Vacuum 41, 933 (1990); B. H. Jo and R. W. Vook, Appl. Surf. Sci. 89, 237 (1995); P. J. Rous et. al., Surf. Sci. 315, L995 (1994).Google Scholar
[6] Kandel, D. and Kaxiras, E., Phys. Rev. Lett. 76, 1114 (1996); A. H. Verbruggen, IBM J. Res. Develop. Vol. 1, 93 (1988).Google Scholar
[7] Derényi, I. and Vicsek, T., Phys. Rev. Lett. 75, 374 (1995).Google Scholar