Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T17:05:24.310Z Has data issue: false hasContentIssue false

Si-On-Sapphire and Si Implanted with Zr Ions: Lattice Location, Solid Phase Epitaxial Regrowth, and Electrical Properties

Published online by Cambridge University Press:  15 February 2011

I. Golecki
Affiliation:
Rockwell International Corporation, Microelectronics Research and Development Center, 3370 Miraloma Avenue, Anaheim, CA 92803. California Institute of Technology, Mail Code 116–81, Pasadena, CA 91125.
I. Suni
Affiliation:
California Institute of Technology, Mail Code 116–81, Pasadena, CA 91125.
Get access

Abstract

Zr ions have been implanted at 300 keV (Rp= 1400Å) and doses of 3×1012 − 3×l015 Zr/cm2 into Si-implanted, amorphous Sip layers on (100) bulk Si and Sion- sapphire. Rutherford backscattering and channeling spectrometry was used to study the Zr distribution and lattice location during solid-phase regrowth of the Si layers. The regrowth at 500—550°C stops at 3.4хl020 Zr/cm3, and Zr exhibits interface trapping and surface segregation effects. In this temperature range, Zr is essentially non-substitutional, and inactive electrically.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Manasevit, H.M., Golecki, I., Moudy, L.A., and Mee, J.E., Electrochem. Soc. Extended Abstracts Vol. 82–1, p. 332 (1982);Google Scholar
1a Golecki, I., Manasevit, H.M., Moudy, L.A., Yang, J.J., and Mee, J.E., 24th Electronics Materials Conference, Fort Collins, CO, June 1982, abstract #D–8.Google Scholar
2. Voronkov, V.V., Voronkova, G.I., Iglitsyn, M.I., and Salmanov, A.G., Soy. Phys. Semicond. 8, 1277 (1975).Google Scholar
3. Mayer, S., U.S. Patent # 3,444,100 (1969).Google Scholar
4. Bagraev, N.T., Vlasenko, L.S., Lebedev, A.A., Merkulov, I.A., and Yasupov, P., Phys. Stat. Sol. (b) 103, K51 (1981).Google Scholar
5. Domeij, B., Fladda, G., and Johansson, N.G.E., Radiation Effects 6, 155 (1970).Google Scholar
6. Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 48, 4234 (1977);CrossRefGoogle Scholar
6a Kennedy, E.F., Csepregi, L., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 48, 4241 (1977).Google Scholar
7. For a recent review, see Williams, J.S., Nucl. Instrum. and Methods (in press, 1983, Proc. International Conference on Ion Beam Modification of Materials, Grenoble, France, September 1982).Google Scholar
8. Suni, I., Göltz, G., Nicolet, M-A., and Lau, S.S., Thin Solid Films 93, 171 (1982).CrossRefGoogle Scholar
9. Golecki, I., Glass, H.L., and Kinoshita, G., Appl. Phys. Lett. 40, 670 (1982).Google Scholar
10. Sigurd, D., Bower, R.W., van der Weg, W.F., and Mayer, J.W., Thin Solid Films 19, 319 (1973).Google Scholar