Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T11:30:45.424Z Has data issue: false hasContentIssue false

Similarities in the Optical Properties of Hexagonal and Cubic InGaN Quantum Wells

Published online by Cambridge University Press:  21 March 2011

S. F. Chichibu
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan Nakamura Inhomogeneous Crystal Project, ERATO, Japan Science and Technology Corporation, 2-4-6 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan
M. Sugiyama
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
T. Onuma
Affiliation:
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
T. Kuroda
Affiliation:
Department of Applied Physics, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
A. Tackeuchi
Affiliation:
Department of Applied Physics, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
T. Sota
Affiliation:
Department of Electrical, Electronics, and Computer Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
T. Kitamura
Affiliation:
Power Electronics Research Center 2, National Institute of Advance Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
H. Nakanishi
Affiliation:
Department of Electrical Engineering, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
Y. Ishida
Affiliation:
Power Electronics Research Center 2, National Institute of Advance Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
H. Okumura
Affiliation:
Power Electronics Research Center 2, National Institute of Advance Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
S. Keller
Affiliation:
Department of Materials Engineering and Department of Electronics and Computer Engineering, University of California, Santa Barbara, CA93106
U. K. Mishra
Affiliation:
Department of Materials Engineering and Department of Electronics and Computer Engineering, University of California, Santa Barbara, CA93106
S. P. DenBaars
Affiliation:
Department of Materials Engineering and Department of Electronics and Computer Engineering, University of California, Santa Barbara, CA93106
S. Nakamura
Affiliation:
Nakamura Inhomogeneous Crystal Project, ERATO, Japan Science and Technology Corporation, 2-4-6 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan Department of Materials Engineering and Department of Electronics and Computer Engineering, University of California, Santa Barbara, CA93106
Get access

Abstract

Optical properties of fully-strained wurtzite and zincblende InxGa1-xN/GaN multiple quantum well (MQW) structures were compared to discuss the origin of exciton localization. In contrast to the hexagonal InGaN MQWs, the photoluminescence (PL) peak energy of cubic InGaN MQWs showed a moderate blueshift with decreasing well thickness, L, and low-temperature PL decay time of the cubic MQWs did not depend strongly on L. The results imply that the wavefunction overlap in cubic InGaN MQWs was not reduced compared to the hexagonal ones, since they do not suffer from the electric field normal to the QW plane due either to spontaneous or piezoelectric polarization. Both MQWs exhibited a large and composition-dependent bandgap bowing, and time-resolved PL (TR-PL) signals showed a stretched-exponential decay even at room temperature. The exciton localization is considered to be an intrinsic property of InGaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer-Verlag, Berlin, 1997).Google Scholar
2. Akasaki, I. and Amano, H., Jpn. J. Appl. Phys. 36 (1997) 5393.Google Scholar
3. Mukai, T., Yamada, M. and Nakamura, S., Jpn. J. Appl. Phys. 38 (1999) 3976.Google Scholar
4. Ponce, F. and Bour, D., Nature 386 (1997) 351.Google Scholar
5. Chichibu, S., Abare, A., Mack, M., Minsky, M., Deguchi, T., Cohen, D., Kozodoy, P., Fleischer, S., Keller, S., Speck, J., Bowers, J. E., Hu, E., Mishra, U. K., Coldren, L. A., DenBaars, S. P., Wada, K., Sota, T. and Nakamura, S., Mat. Sci. Eng. B 59 (1999) 298; S. F. Chichibu, T. Sota, K. Wada, S. P. DenBaars and S. Nakamura, MRS Internet J. Nitride Semicond. Res. 4S1 (1999) G2.7; S. F. Chichibu, T. Sota, K. Wada, O. Brandt, K. H. Ploog, S. P. DenBaars and S. Nakamura, Phys. Stat. Sol. (a) 183 (2001) 91.Google Scholar
6. Chichibu, S., Azuhata, T., Sota, T. and Nakamura, S., Appl. Phys. Lett. 69 (1996) 4188.Google Scholar
7. Bernardini, F. and Fiorentini, V., Phys. Rev. B 57 (1998) R9427; Phys. Stat. Sol. (b) 216 (1999) 391.Google Scholar
8. Miller, D. A., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H. and Burrus, C. A., Phys. Rev. Lett. 53 (1984) 2173; Phys. Rev. B 32 (1985) 1043.Google Scholar
9. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 36 (1997) L382.Google Scholar
10. Chichibu, S., Wada, K. and Nakamura, S., Appl. Phys. Lett. 71 (1997) 2346.Google Scholar
11. Sugawara, M., Phys. Rev. B 51 (1995) 10743.Google Scholar
12. Shan, W., Walukiewicz, W., Haller, E., Little, B., Song, J. J., McCluskey, M., Johnson, N., Feng, Z., Schurman, M. and Stall, R., J. Appl. Phys. 84 (1998) 4452.Google Scholar
13. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg. and Nakamura, S., Appl. Phys. Lett. 70 (1997) 981.Google Scholar
14. Kisielowski, C., Liliental-Weber, Z. and Nakamura, S., Jpn. J. Appl. Phys. 36 (1997) 6932.Google Scholar
15. O'Donnell, K. P., Martin, R. W. and Middleton, P. G., Phys. Rev. Lett. 82 (1999) 237; R. W. Martin, P. G. Middleton, K. P. O'Donnell and W. Van der Stricht, Appl. Phys. Lett. 74 (1999) 263.Google Scholar
16. Seifert, W. and Tempel, A., Phys. Stat. Sol. (a) 23, K39 (1974).Google Scholar
17. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
18. Okumura, H., Ohta, K., Feuillet, G., Balakrishnan, K., Chichibu, S., Hamaguchi, H., Hacke, P., and Yoshida, S., J. Cryst. Growth 178, 113 (1997).Google Scholar
19. Chichibu, S., Okumura, H., Nakamura, S., Feuillet, G., Azuhata, T., Sota, T., and Yoshida, S., Jpn. J. Appl. Phys. 36, 1976 (1997).Google Scholar
20. Taniyasu, Y., Suzuki, K., Lim, D., Jia, A., Shimotomai, M., Kato, Y., Konbayashi, M., Yoshikawa, A., and Takahashi, K., Phys. Stat. Sol. (a) 180, 241 (2000).Google Scholar
21. Yang, H., Zhang, S., Xu, D., Li, S., Zhao, D., Fu, Y., Sun, Y., Feng, Z., and Zheng, L., Inst. Pure and Appl. Phys. Conf. Ser. 1, 64 (2000).Google Scholar
22. Brandt, O., Müllhäuser, J., Trampert, A., and Ploog, K., Mat. Sci. Eng. B 59, 73 (1999).Google Scholar
23. Silveira, E., Tabata, A., Leite, J., Trentin, R., Lemos, V., Frey, T., As, D., Schikora, D., and Lischka, K., Appl. Phys. Lett. 75, 3602 (1999).Google Scholar
24. Nakadaira, A. and Tanaka, H., Phys. Stat. Sol. (a) 176, 529 (1999).Google Scholar
25. Holst, J., Hoffmann, A., Rudloff, D., Bertram, F., Riemann, T., Christen, J., Frey, T., As, D., Schikora, D., and Lischka, K., Appl. Phys. Lett. 76, 2832 (2000).Google Scholar
26. Kitamura, T., Cho, S., Ishida, Y., Ide, T., Shen, X., Nakanishi, H., Chichibu, S., and Okumura, H., J. Cryst. Growth 227–228, 471 (2001).Google Scholar
27. Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, 8132 (1995).Google Scholar
28. McGill, S., Fowler, K., and DeLeo, G., Phys. Rev. B 57, 8951 (1998).Google Scholar
29. Chichibu, S. F., Sugiyama, M., Onuma, T., Kitamura, T., Nakanishi, H., Kuroda, T., Tackeuchi, A., Sota, T., Ishida, Y., and Okumura, H., Appl. Phys. Lett. 79 (2001). (in press for Dec. 24 issue).Google Scholar
30. Bellaiche, L., Mattila, T., Wang, L.-W., Wei, S.-H., and Zunger, A., Appl. Phys. Lett. 74, 1842 (1999).Google Scholar
31. Chen, X., Henderson, B., and O'Donnell, K., Appl. Phys. Lett. 60, 2672 (1992).Google Scholar