Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T19:27:07.005Z Has data issue: false hasContentIssue false

Silicon Growth Rate Enhancement Using Trisilane in a Laser Direct-Writing Technique

Published online by Cambridge University Press:  15 February 2011

S. Boughaba
Affiliation:
École Polytechnique de Montréal, Département de Génie Physique, C. P. 6079, Succursale “Centre-Ville”, Montréal (QC), Canada H3C 3A7
G. Auvert
Affiliation:
C. N. E. T., France Telecom, B. P. 98, 38243 Meylan Cedex, France
Get access

Abstract

An argon-ion laser based direct-writing technique was used to deposit micron-size silicon lines from the decomposition of silane (SiH4) and trisilane (Si3H8) gases. The substrates used were 0.1 μrn polysilicon/1 μ.m silicon dioxide/<100> monosilicon multilayered structures. The vertical silicon deposition rate was investigated as a function of the laser-induced surface temperature and gas pressure. For temperatures ranging between 1000 and 1410 °C, the pressure was varied in the range 5-250 mbar and 0.1-30 mbar for SiH4 and Si3H8, respectively. For both gases, three growth regimes could be distinguished according to precursor pressure. The deposition rates achieved using trisilane are far higher than those obtained with silane in spite of the use of a reduced gas pressure range. For a laser-induced surface temperature of 1300 °C and a precursor pressure of 10 mbar, the deposition rates achieved using SiH4 and Si3H8 are, respectively, 0.42 and 20 μ.m/s, representing an enhancement factor of 50 with the later.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ehrlich, D. J. and Tsao, J. Y., in VLSI Electronics : Microstructure Science, Vol. 7, edited by Einspruch, N. G., (Academic Press, New York, 1983), p. 129.Google Scholar
2 Ehrlich, D. J., Tsao, J. Y., Silversmith, D. J., Sedlacek, J. H. C., Mountain, R. W., and Graber, W. S., IEEE Electron Dev. Lett. EDL-5, 32 (1984).Google Scholar
3 Whitehead, J. C., Mitlitsky, F., Ashkenas, D. J., Bernhardt, A. F., Farmwald, S. E., Kaschmitter, J. L., and Mc Williams, B. M., in Manufacturing Applications of Lasers, SPIE, Vol. 621, (SPIE, Bellingham, WA, 1986), p. 62.Google Scholar
4 Black, J. G., Ehrlich, D. J., Rothschild, M., Doran, S. P., and Sedlacek, J. H. C., J. Vac. Sci. Technol. B5, 419 (1987).Google Scholar
5 Hanabusa, M., Thin Solid Films 218, 144 (1992).Google Scholar
6 Boughaba, S. and Auvert, G., J. Appl. Phys. 73, 8590 (1993).Google Scholar
7 Boughaba, S., Auvert, G., and Pauleau, Y., J. Appl. Phys. 75, 3635 (1994).Google Scholar
8 Nassuphis, N., Mathews, R. H., Palmacci, S. T., and Ehrlich, D. J., J. Vac. Sci. Technol. B12, 3294 (1994).Google Scholar
9 Bäuerle, D., Chemical Processing with Lasers, Spinger Ser. Mater. Sci., Vol. 1, edited by Mooradian, A. and Panish, M. B. (Spinger, Berlin, 1986).Google Scholar
10 Ehrlich, D. J. and Tsao, J. Y. (eds), Laser Microfabrication : Thin Film Processes and Lithography, Academic Press, New York, 1989.Google Scholar
11 Kunz, R. R., Horn, M. W., Bloomstein, T. M., and Ehrlich, D. J., Appl. Surf. Sci. 79/80, 12 (1994).Google Scholar
12 Ehrlich, D. J., Osgood, R. M. Jr., and Deutsch, T. F., Appl. Phys. Lett. 39, 957 (1981).Google Scholar
13 Szikora, S., Kräuter, W., and Bäuerle, D., Mater. Lett. 2(2A), 263 (1984).Google Scholar
14 Auvert, G., Pauleau, Y., and Tonneau, D., in Laser and Particle-Beam Chemical Processing for Microelectronics, Mater. Res. Soc. Symp. Proc., Vol. 101, edited by Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M. (Materials Research Society, Pittsburgh, PA, 1988), p. 125.Google Scholar
15 Bäuerle, D., Irsigler, P., Leyendecker, G., Noll et, H. Wagner, D., Appl. Phys. Lett. 40, 819 (1982).Google Scholar
16 Ishizu, A., Inoue, Y., Nishimura, T., Akasaka et, Y. Miki, H., Jpn. J. Appl. Phys. 25, 1830 (1986).Google Scholar
17 Boughaba, S. and Auvert, G., Appl. Surf. Sci. 54, 25 (1992).Google Scholar
18 Boughaba, S., Ph. D. thesis, Institut National Polytechnique, Grenoble (France), 1993.Google Scholar
19 Boughaba, S. and Auvert, G., J. Appl. Phys. 78, 6791 (1995).Google Scholar
20 Boughaba, S. and Auvert, G., Appl. Surf. Sci. 62, 79 (1993).Google Scholar
21 Liu, Y. S., in Tungsten and other Refractory Metals for VLSI Applications, edited by Blewer, R. S. (Materials Research Society, Pittsburgh, PA, 1986), p. 43.Google Scholar