Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T03:39:51.244Z Has data issue: false hasContentIssue false

Short-Range Order and Nanocrystallization in Amorphous Zr-Ti-Cu-Ni-Al

Published online by Cambridge University Press:  15 February 2011

L. Q. Xing
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Xiaofeng Gu
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
T. A. Lusby
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
A. J. Melmed
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
T. C. Hufnagel
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Get access

Abstract

We have examined the effect of Ti content on the crystallization kinetics of Zr-based amorphous alloys. In Zr59Ti3Cu20Ni8Al10, annealing above the glass transition temperature produces 50-100 nm crystalline precipitates, as seen in transmission electron microscope images. In contrast, TEM images and diffraction patterns from annealed Zr54.5Ti7.5Cu20Ni8Al10 show no evidence of crystalline phase formation. Structural changes upon annealing do occur in this alloy, however, as revealed by field ion microscopy. The effect of Ti is to favor the formation of clusters of short-range order; this tendency for clustering is apparently the cause of difference in crystallization behavior between the two alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Zhang, T., Nishiyama, N., Ohba, K. and Masumoto, T., Mater. Trans. JIM 34, 1234 (1993).Google Scholar
2. Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
3. Xing, L.Q., Ochin, P., Harmelin, M., Faudot, F., Bigot, J., J. Non-Cryst. Solid 205/207, 597 (1996).Google Scholar
4. Yoshizawa, Y., Oguma, S. and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).Google Scholar
5. Kim, K.Y., Noh, T.H. and Kang, I.K., Mater.Sci. Eng. A179/180, 552 (1994).Google Scholar
6. Hone, K., Zhang, Y., Inoue, A. and Sakurai, T., Mater. Trans. JIM 36, 809 (1995).Google Scholar
7. Makino, A., Inoue, A. and Masumoto, T., Mater. Trans. JIM 36, 924 (1995).Google Scholar
8. Schneider, S., Thiyagarajian, P. and Johnson, W.L., Appl. Phys. Lett. 68, 493 (1996).Google Scholar
9. Yavari, A. R. and Drbohlav, O., Mater. Trans. JIM 36, 896 (1995).Google Scholar
10. Inoue, A., Takeuchi, A., Makino, A. and Masumoto, T., Mater. Trans. JIM 36, 962 (1995).Google Scholar
11. Zhang, Y., Hono, K., Inoue, A., Sakurai, T., Mater. Sci. Eng. A217/218, 407 (1996).Google Scholar
12. Xing, L.Q., Eckert, J., Loeser, W. and Schultz, L., Appl. Phys. Lett. 74, 664 (1999).Google Scholar
13. Xing, L.Q., Eckert, J., Loeser, W., Hufnagel, T.C., Xie, Z.L., Hemker, K. and Schultz, L. (in preparation).Google Scholar
14. Mueller, E.W. and Thong, T.T., Field Ion Microscopy Principles and Applications. New York: Elsevier (1969).Google Scholar
15. Xing, L.Q., Eckert, J., Loeser, W., Schultz, L. and Herlach, D.M., Phil. Mag. A 79, 1095 (1999).Google Scholar
16. Herlach, D.M., Mater. Sci. Eng. 12, 177 (1994).Google Scholar