Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T17:19:15.723Z Has data issue: false hasContentIssue false

Semiconductor Nanocrystal Floating-gate Memory Devices

Published online by Cambridge University Press:  01 February 2011

P. Dimitrakis
Affiliation:
Institute of Microelectronics, NCSR ‘Demokritos’ 15310. Aghia Paraskevi, Greece
P. Normand
Affiliation:
Institute of Microelectronics, NCSR ‘Demokritos’ 15310. Aghia Paraskevi, Greece
Get access

Abstract

Current research directions and recent advances in the area of semiconductor nanocrystal floating-gate memory devices are herein reviewed. Particular attention is placed on the advantages, limitations and perspectives of some of the principal new alternatives suggested for improving device performance and reliability. The attractive option of generating Si nanocrystal memories by ion-beam-synthesis (IBS) is discussed with emphasis on the ultra-low-energy (ULE) regime. Pertinent issues related to the fabrication of low-voltage memory cells and the integration of the ULE-IBS technique in manufactory environment are discussed. The effect on device performance of parasitic transistors that form at the channel corner of shallow trench isolated transistors is described in details. It is shown that such parasitic transistors lead to a substantial degradation of the electrical properties of the intended devices and dominates the memory behavior of deep submicronic cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Special issue on Emerging Solid-State Memory Technologies, Ed. H. Gorokin and Y. Yang, MRS Bulletin, 29, 805 (2004).Google Scholar
2. White, M. H., Adams, D. A. and Bu, J., IEEE Circ. Dev. 16, 22 (2000).Google Scholar
3. Bu, J. and White, M. H., Sol. St. Electron. 45, 113 (2001).Google Scholar
4. van Schaijk, R., van Duuren, M., Mei, W. Y., van der Jeugd, K., Rothschild, A. and Demand, M., Microelectron. Eng. 72, 395 (2004).Google Scholar
5. Swift, C. T., Chindalore, G. L., Harber, K., Harp, T. S., Hoefler, A., Hong, C. M., Ingersoll, P. A., Li, C. B., Prinz, E. J. and Yater, J. A., IEEE IEDM Tech. Dig. 2002, pp. 927930.Google Scholar
6. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E.F. and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
7. De Blauwe, J., IEEE Trans. Nanotech. 1, 72 (2002).Google Scholar
8. Kapetanakis, E., Normand, P., Beltsios, K. and Tsoukalas, D., Nanocrystal Memories in Encyclopedia of Nanoscience and Nanotechnology , Ed. Nalwa, H. S. (ASP 2003), Vol. 6, pp. 321340.Google Scholar
9. Baik, S. J., Choi, S., Chung, U.I. and Moon, J. T., Solid-State Electron. 48, 1475 (2004).Google Scholar
10. De Salvo, B., Gerardi, C., Lombardo, S., Baron, T., Perniola, L., Mariolle, D., Mur, P., Toffoli, A., Gely, M., Semeria, M. N., Deleonibus, S., Ammendola, G., Ancarani, V., Melanotte, M., Bez, R., Baldi, L., Corso, D., Crupi, I., Puglisi, R. A., Nicotra, G., Rimini, E., Mazen, F., Ghibaudo, G., Pananakakis, G., Monzio Compagnoni, C., Ielmini, D., Lacaita, A., Spinelli, A., Wan, Y. M. and van der Jeugd, K., IEEE IEDM Tech. Dig. 2003, pp. 597600.Google Scholar
11. Muralidhar, R., Steimle, R.F., Sadd, M., Rao, R., Swift, C.T., Prinz, E.J., Yater, J., Grieve, L., Harber, K., Hradsky, B., Straub, S., Acred, B., Paulson, W., Chen, W., Parker, L., Anderson, S.G.H., Rossow, M., Merchant, T., Paransky, M., Huynh, T., Hadad, D., Chang, Ko-Min and White, B.E. Jr, IEEE IEDM Tech. Dig. 2003, pp. 601604.Google Scholar
12. Eitan, B., Pavan, P., Bloom, I., Aloni, E., Frommer, A. and Finzi, D., IEEE Electron Dev. Lett. 21, 543 (2000).Google Scholar
13. She, M. and King, T-J, IEEE Trans. Electron Dev. 50, 1934 (2003).Google Scholar
14. Liu, Z., Lee, C., Narayanan, V., Pei, G. and Kan, E. C., IEEE Trans. Electron Dev. 49, 1606 (2002).Google Scholar
15. King, Y. C., King, T. J. and Hu, C., IEEE IEDM Tech. Dig. 1998, pp. 115118.Google Scholar
16. Kim, D. W., Kim, T. and Banerjee, S. K., IEEE Trans. Electron Dev. 50, 1823 (2003).Google Scholar
17. Ohba, R., Sugiyama, N., Uchida, K., Kora, J. and Toriumi, A., IEEE Trans. Electron Dev. 49, 1392 (2002).Google Scholar
18. Lee, C., Gorur-Seetharam, A. and Kan, E., IEEE IEDM Tech. Dig. 2003, pp. 557560.Google Scholar
19. Steimle, R. F., Sadd, M., Muralidhar, R., Rao, R., Hradsky, B., Straub, S. and White, B. E., IEEE Trans. Nanotech. 2, 335 (2003).Google Scholar
20. Baik, S. J., Choi, S., Chung, U.I. and Moon, J. T., IEEE IEDM Tech. Dig. 2003, pp. 267270.Google Scholar
21. Chen, J. H., Wang, Y. Q., Yoo, W. J., Yeo, Y.-C., Samudra, G., Chan, D.S.H., Du, A. Y. and Kwong, D.-L., IEEE Trans. Electron Dev. 51, 1840 (2004).Google Scholar
22. Guarini, K. W., Black, C. T., Zhang, Y., Babich, I. V., Sikorski, E. M. and Gignac, L. M., IEEE IEDM Tech. Dig. 2003, pp. 541544.Google Scholar
23. Walters, R. J., Kik, P. G., Casperson, J. D., Atwater, H. A., Lindstedt, R., Giorgi, M., and Bourianoff, G., Appl. Phys. 85, 2622 (2004).Google Scholar
24. Meldrum, A., Haglund, R. F. Jr, Lynn, , Boatner, L. A. and White, C. W., Adv. Mater. 13, 1431 (2001).Google Scholar
25. Hanafi, H. I., Tiwari, S. and Khan, I., IEEE Trans. Elec. Dev. 43, 1553 (1996).Google Scholar
26. von Borany, J., Gebel, T., Stegemann, K.-H., Thees, H.-J. and Wittmaack, M., Solid-State Electron. 46, 1729 (2002).Google Scholar
27. Garrido, B., Cheylan, S., Gonzalez-Varona, O., Perez-Rodryguez, A. and Morante, J. R., Appl. Phys. Lett. 82, 4818 (2003).Google Scholar
28. Normand, P., Kapetanakis, E., Dimitrakis, P., Skarlatos, D., Beltsios, K., Tsoukalas, D., Bonafos, C., Ben Asssayag, G., Cherkashin, N., Claverie, A., Van Den Berg, J. A., Soncini, V., Agarwal, A., Ameen, M., Perego, M. and Fanciulli, M., Nucl. Instrum. Meth. B216, 228 (2004).Google Scholar
29. Bonafos, C., Carrada, M., Cherkashin, N., Coffin, H., Chassaing, D., Ben Assayag, G., Claverie, A., Muller, T., Heinig, K.H., Perego, M., Fanciulli, M., Dimitrakis, P. and Normand, P., J. Appl. Phys. 95, 5696 (2004).Google Scholar
30. Muller, T., Heinig, K.-H., Moller, W., Bonafos, C., Coffin, H., Ben Assayag, G., Schamm, S., Zanchi, G., Claverie, A., Tence, M. and Colliex, C., Appl. Phys. Lett. 85, 2373 (2004).Google Scholar
31. Normand, P., Dimitrakis, P., Kapetanakis, E., Skarlatos, D., Beltsios, K., Tsoukalas, D., Bonafos, C., Coffin, H., Ben Assayag, G., Claverie, A., Soncini, V., Agarwal, A., Ch., Sohl and Ameen, M., Microelectron. Eng. 73–74, 730 (2004).Google Scholar
32. Dimitrakis, P., Kapetanakis, E., Tsoukalas, D., Skarlatos, D., Bonafos, C., Ben Asssayag, G., Claverie, A., Perego, M., Fanciulli, M., Soncini, V., Sotgiu, R., Agarwal, A., Ameen, M. and Normand, P., Solid-State Electron. 48, 1511 (2004).Google Scholar
33. Normand, P., Appl. Phys. Lett. 83, 168 (2003)Google Scholar
34. Brongersma, M. L., Polman, A., Min, K. S., Boer, E., Tambo, T. and Atwater, H. A., Appl. Phys. Lett. 72, 2577 (1998).Google Scholar
35. Normand, P., Dimitrakis, P., Soncini, V., Sotgiou, R., Contin, V. and Albini, G., unpublished data (2004).Google Scholar
36. Zhou, X. and Lim, K.Y., Solid-State Electron. 46, 769 (2002).Google Scholar
37. Oishi, T., Shiozawa, K., Furukawa, A., Abe, Y. and Tokuda, Y.. Jpn. J. Appl. Phys. 37, L852 (1998).Google Scholar
38. Shigyo, N. and Hiraoka, T., Solid-State Electron. 43, 2061 (1999).Google Scholar